Btrfs
"Btrfs" es un sistema de ficheros copy-on-write (CoW) para Linux enfocado a implementar características novedosas y avanzadas y, a la vez, centrado en la tolerancia a fallos, reparación y facilidad de administración. Desarrollado conjuntamente por Oracle, Red Hat, Fujitsu, Intel, SUSE, STRATO, y muchos más, Btrfs está publicado bajo la licencia GPL y se encuentra abierto a contribuciones por parte de cualquier persona.
Características
Ext4 es seguro y estable y es capaz de manejar sistemas de ficheros muy grandes sin problemas, entonces ¿Por qué cambiar?. Si bien es verdad que Btrfs aún es considerado experimental y está creciendo en cuanto a estabilidad, el momento en el que se convierta en el sistema de ficheros d por defecto en los sistemas Linux se va acercando. Algunas distribuciones ya han comenzado a cambiar en sus últimos lanzamientos. Btrfs tiene un gran número de características avanzadas en común con ZFS, las cuales hicieron que ZFS fuera tan popular entre las distribuciones de BSD y los dispositivos NAT.
- Copy on Write (CoW) y snapshotting - Facilitar la creación de backups incluso desde un sistema de ficheros "en caliente" o de una máquina virtual.
- Checksums a nivel de fichero - Los metadatos de cada fichero incluyen un checksum que es usado para detectar y reparar errores.
- Compresión - Los ficheros pueden estar comprimidos o descomprimidos en vuelo, lo que aumenta la velocidad de lectura.
- Auto-Desfragmentación - Los sistemas de ficheros son optimizados por un proceso en segundo plano "mientras" están en uso.
- Subvolumenes - Los sistemas de ficheros pueden compartir un determinado espacio en vez de tener que utilizar sus propias particiones.
- RAID - Btrfs tiene sus propias implementaciones de RAID de manera que LVM o mdadm no son necesarios para tener un RAID. De momento RAID 0 y 1 están soportados; RAID 5 y 6 están de camino.
- Las particiones son opcionales - Si bien Btrfs puede trabajar con particiones, también es capaz de utilizar volumenes sin formato (/dev/<device>) directamente.
- Deduplicación de datos - El soporte de deduplicación de datos es limitado; sin embargo, eventualmente se convertirá en una característica estándar en Btrfs. Ésto permite reducir el espacio ocupado mediante la comparación binaria de ficheros.
Para una lista más exhaustiva y actualizada de las características visite la sección de estado de su Wiki. Sin embargo, no todas las características son lo suficientemente maduras para un uso extensivo.
Con el tiempo, los nuevos sistemas de ficheros en cluster tomarán ventaja de Btrfs mediante el uso de copy on write y otras características avanzadas referentes al almacenamiento de objetos. Ceph es un ejemplo de un sistema de ficheros en cluster que se ve realmente prometedor, y es capaz de aprovechar las ventajas de Btrfs.
Btrfs is said to be a stable and well-tested single-disk filesystem and ext4 replacement, but caution is advised when using advanced features such as Btrfs-RAID.[1]
Caveats
btrfs can counter-intuitively fail filesystem operations with ENOSPC when df reports free space due to internal fragmentation (free space pinned by DATA + SYSTEM chunks, but needed in METADATA chunks).
Additionally, a single 4K reference to a 128M extent inside btrfs can cause free space to be present, but unavailable for allocations. This can also cause btrfs to return ENOSPC when free space is reported by df.
Installing sys-fs/btrfsmaintenance and configuring the scripts to run periodically can help to reduce the possibility of ENOSPC issues by rebalancing btrfs, but it will not eliminate the risk of ENOSPC when free space is present. Some workloads will never hit ENOSPC while others will. If the risk of ENOSPC in production is unacceptable, you should use something else. If using btrfs, be certain to avoid configurations known to have issues.
With the exception of ENOSPC, information on the issues present in btrfs in the latest kernel branches is available at the btrfs status page.
Instalación
Kernel
Active las siguientes opciones del kernel para habilitar el soporte para Btrfs:
File systems --->
<*> Btrfs filesystem
Emerge
El paquete sys-fs/btrfs-progs contiene las utilidades necesarias para trabajar con el sistema de ficheros Btrfs.
root #
emerge --ask sys-fs/btrfs-progs
Uso
Consider setting up sys-fs/btrfsmaintenance to handle regular balancing, defrag, trimming, and scrubbing.
Escribir largos comandos de Btrfs se puede convertir rápidamente en un incordio. Cada comando (además del btrfs inicial) puede ser reducido a un pequeño conjunto de instrucciones. Este método es de gran ayuda cuando se trabaja desde la línea de comandos ya que ayuda a reducir el número de caracteres a teclear.
Por ejemplo, para defragmentar un sistema de ficheros localizado en /, la manera larga sería:
root #
btrfs filesystem defragment -v /
Acorte cada uno de los comandos largos a base de reducirlos a su prefijo único. En este contexto único significa que no existe una pareja de comandos que hagan cosas diferentes, por mínimas que sean, que concidan en la forma mínima del comando. La versión acortada del comando anterior es:
root #
btrfs fi de -v /
Ningún otro comando de btrfs comienza con fi
; filesystem
es el único. Lo mismo se aplica al comando de
, el cual es un subcomando del comando filesystem
.
Creación
La orden mkfs.btrfs es irreversible y destruye todo el contenido de la partición a formatear. Por favor, asegúrese de que se ha seleccionado la partición en el disco correcto antes de ejecutar cualquier orden mkfs!
Para crear un sistema de ficheros Btrfs en la partición /dev/sdXN:
root #
mkfs.btrfs /dev/sdXN
En el ejemplo anterior, reemplace N
con el número de la partición y X
con la letra del disco a formatear. Por ejemplo, para formatear la tercera partición del primer disco del sistema con formato Btrfs ejecute:
root #
mkfs.btrfs /dev/sda3
El número de la última columna en /etc/fstab debe ser
0
para todas las particiones Btrfs. Ni fsck.btrfs ni btrfsck deberían ser ejecutados en cada inicio del sistema.Labels
Labels can be added to btrfs filesystems, making mounting and organization easier.
Labels are generally less unique than UUIDs, but setting labels like rootfs for /, and homedir for /home can help with organization.
If multiple filesystems with the same label exist on a system, the first labeled system in the fstab, or the first returned by blkid will be mounted. It is generally best to avoid depending on this behavior, so unique labels should be used.
Labels can be added to a btrfs filesystem after it has been created by using:
root #
btrfs filesystem label /dev/sda1 rootfs
Labels can be added when the btrfs filesystem is created with:
root #
mkfs.btrfs -L rootfs /dev/sda1
Montaje
Después de la creación, los sistemas de ficheros se pueden montar de diferentes maneras:
- mount - Montaje manual.
- fstab - Definir los puntos de montaje en /etc/fstab activa los montajes automáticos en el inicio del sistema.
- Removable media - Montajes automáticos a demanda (útil para memorias USB).
- AutoFS - Montaje automático al acceder al sistema de ficheros.
Convertir sistemas de ficheros basados en ext*
Es posible convertir sistemas ext2, ext3 y ext4 a Btrfs using la herramienta btrfs-convert.
Las siguientes instrucciones solo soportan la conversión de sistemas de ficheros que se encuentran desmontados. Para convertir la partición root, inicie un disco de rescate del sistema (SystemRescueCD funciona perfectamente) y ejecute los comandos de conversión sobre la partición de root.
Primero, asegúrese de que el sistema no se encuentra montada:
root #
umount <dispositivo_montado>
Compruebe la integridad del sistema de ficheros usando la herramienta apropiada de fsck. En el siguiente ejemplo, el sistema de ficheros es ext4:
root #
fsck.ext4 -f <dispositivo_desmontado>
Use btrfs-convert para convertir el dispositivo con formato ext* a un dispositivo formateado en Btrfs:
root #
btrfs-convert <dispositivo_desmontado>
Asegúrese de editar el fichero /etc/fstab después de que el dispositivo haya sido formateado para cambiar la columna de sistema de ficheros de ext4 a Btrfs:
<device> <mountpoint> btrfs defaults 0 0
Desfragmentación
Otra característica de Btrfs es la desfragmentación en línea. Para desfragmentar un sistema de ficheros root formateado en Btrfs ejecute el comando:
root #
btrfs filesystem defragment -r -v /
La opción de montado autodefrag
mantiene el efecto default del defragmentado online.
La desfragmentación con la versiones de kernel < 3.9 o ≥ 3.14-rc2, así como las versiones estables ≥ 3.10.31, ≥ 3.12.12 o ≥ 3.13.4 rompen los enlaces entre los ficheros y sus copias COW [2] y por lo tanto puede incrementar el espacio usado considerablemente. Asegúrese de que tiene suficiente espacio disponible y no demasiadas snapshots en el disco porque las particiones Btrfs pueden volverse realmente lentas.
Compresión
Btrfs ofrece soporte transparente para compresión usando los algoritmos zlib, lzo y zstd (v5.1.0)[3].
Es posible comprimir ficheros específicos utilizando los siguientes atributos de fichero:
user $
chattr +c
La opción de montaje compress
establece por defecto la compresión de los ficheros nuevos que se crean. Para comprimir de nuevo el sistema de ficheros completo usando la compresión lzo, ejecute la siguiente orden:
root #
btrfs filesystem defragment -r -v -clzo /
Dependiendo de la CPU y del rendimiento del disco, utilizar compresión mediante el algoritmo lzo podría mejorar el rendimiento en general.
Es posible utilizar el algoritmo de compresión zlib en vez de lzo. Zlib es más lento pero tiene un mejor ratio de compresión:
To force zlib compression across the whole filesystem:
root #
btrfs filesystem defragment -r -v -czlib /
Substitute zstd for zlib in the example above to activate zstd compression.
Nivel de compresión
Since kernel version 4.15.0[4], zlib compression can now be set by levels 1-9. Since kernel version 5.1.0 zstd can be set to levels 1-15. For example, to set zlib to maximum compression at mount time:
root #
mount -o compress=zlib:9 /dev/sdXY /ruta/a/puntodemontaje/btrfs
Or to set minimal compression:
root #
mount -o compress=zlib:1 /dev/sdXY /ruta/a/puntodemontaje/btrfs
Or adjust compression by remounting:
root #
mount -o remount,compress=zlib:3 /ruta/a/puntodemontaje/btrfs
The compression level should be visible in /proc/mounts, or by checking the most recent dmesg output using the following command:
root #
dmesg |grep -i btrfs
[ 0.495284] Btrfs loaded, crc32c=crc32c-intel [ 3010.727383] BTRFS: device label My Passport devid 1 transid 31 /dev/sdd1 [ 3111.930960] BTRFS info (device sdd1): disk space caching is enabled [ 3111.930973] BTRFS info (device sdd1): has skinny extents [ 9428.918325] BTRFS info (device sdd1): use zlib compression, level 3
Adjust fstab for compression
Once a drive has been remounted or adjusted to compress data, be sure to add the appropriate modifications to the /etc/fstab file. In this example, zstd compression is set with a level of 9 at mount time:
/dev/sdb /srv btrfs compress=zstd:9,relatime,rw 0 0
Compression ratio and disk usage
The usual userspace tools for determining used and free space like du and df may provide inaccurate results on a Btrfs partition due to inherent design differences in the way files are written compared to, for example, ext2/3/4[5].
It is therefore advised to use the du/df alternatives provided by the btrfs userspace tool btrfs filesystem
. In addition, the compsize tool found in the sys-fs/compsize package can be helpful in providing additional information regarding compression ratios and the disk usage of compressed files. The following are example uses of these tools for a btrfs partition mounted under /media/drive.
user $
btrfs filesystem du -s /media/drive
Total Exclusive Set shared Filename 848.12GiB 848.12GiB 0.00B /media/drive/
user $
btrfs filesystem df /media/drive
Data, single: total=846.00GiB, used=845.61GiB System, DUP: total=8.00MiB, used=112.00KiB Metadata, DUP: total=2.00GiB, used=904.30MiB GlobalReserve, single: total=512.00MiB, used=0.00B
user $
compsize /media/drive
Processed 2262 files, 112115 regular extents (112115 refs), 174 inline. Type Perc Disk Usage Uncompressed Referenced TOTAL 99% 845G 848G 848G none 100% 844G 844G 844G zlib 16% 532M 3.2G 3.2G
Múltiples dispositivos (RAID)
Se puede utilizar Btrfs con dispositivos múltiples (md) para crear RAIDs. Utilizar Btrfs para crear sistemas de ficheros que se extienden en dispositivos múltiples es más fácil que crearlos usando {tip{c|mdadm}}. No se necesita tiempo para inicialización para su creación.
Btrfs handles data and metadata separately. This is important to keep in mind when using a multi-device filesystem. It is possible to use separate profiles for data and metadata block groups. For example, metadata could be configured across multiple devices in RAID1, while data could be configured to RAID5. This profile is possible when using three or more block devices, since RAID5 requires a minimum of 3 block devices.
This type of profile offers the benefit of redundancy for metadata on each device and striping for data across devices, which increases read speeds. The drawback of this profile is more space than necessary is used for metadata, and write speeds are reduced for data blocks, since RAID5 uses a parity bit.
Creation
El método más simple es utilizar el dispositivo de bloques completo sin particionar para crear un sistema de ficheros. Por ejemplo, para crear un sistema de ficheros en modo RAID1 en dos dispositivos:
root #
mkfs.btrfs -m raid1 <dispositivo1> <dispositivo2> -d raid1 <dispositivo1> <dispositivo2>
Conversion
Converting between RAID profiles is possible with the balance sub-command. For example, say three block devices are presently configured for RAID1 and mounted at /srv. It is possible to convert the data in this profile from RAID1 to RAID5 with the following command:
root #
btrfs balance start -dconvert=raid0 -mconvert=raid0 --force /srv
Conversion can be performed while the filesystem is online and in use. Possible RAID modes in btrfs include RAID0, RAID1, RAID5, RAID6, and RAID10. See the upstream Btrfs wiki for more information.
Actualmente no es seguro utilizar los modos RAID 5 o RAID 6[6]. RAID 5 y 6 han recibido ciertas correcciones[7] en Linux 4.12, but en general siguen estando marcados como inestables.[8][9]. A los usuarios que quieran utilizar las funcionalidades de RAID 5 y RAID 6 en Btrfs se les recomienda que comprueben la página sobre el estado de Brtfs para ver el estado de la estabilidad de dichos modos antes de utilizarlos.
Addition
Additional devices can be added to existing multi device file systems. Follow the removal section below.
A riskier, but faster, alternative to safely removing a device is to shut the system down (or if the system supports hot swappable drives, at least unmount the filesystem), physically disconnect and remove the device that is to be replaced, substituted and connect the new device in it's place, power up the system (if necessary).
Note: Systems that will be power cycled will have the multi device filesystem fail to mount, since a device has been physically removed from the pool.
Once the system is booted, mount the multi-device filesystem with mount -odegraded, then perform the following steps on adding a new device.
root #
mount -odegraded /srv
root #
btrfs device add --force /dev/sdd /srv
After the device has been re-added it is then necessary to re-balance the filesystem to be sure data is spanned across the newly added device:
root #
btrfs balance start /srv
Removal
By device path
Block devices (disks) can be removed from multi-device filesystems using the btrfs device remove subcommand:
root #
btrfs device remove /dev/sde /srv
By device ID
Use the usage subcommand to determine the device IDs:
root #
btrfs device usage /srv
/dev/sdb, ID: 3 Device size: 1.82TiB Device slack: 0.00B Data,RAID1: 25.00GiB Data,RAID5: 497.00GiB Data,RAID5: 5.00GiB Metadata,RAID5: 17.00GiB Metadata,RAID5: 352.00MiB System,RAID5: 32.00MiB Unallocated: 1.29TiB /dev/sdc, ID: 1 Device size: 1.82TiB Device slack: 0.00B Data,RAID1: 25.00GiB Data,RAID5: 497.00GiB Data,RAID5: 5.00GiB Metadata,RAID5: 17.00GiB Metadata,RAID5: 352.00MiB System,RAID5: 32.00MiB Unallocated: 1.29TiB /dev/sdd, ID: 4 Device size: 1.82TiB Device slack: 0.00B Data,RAID1: 25.00GiB Data,RAID5: 497.00GiB Data,RAID5: 5.00GiB Metadata,RAID5: 17.00GiB Metadata,RAID5: 352.00MiB System,RAID5: 32.00MiB Unallocated: 1.29TiB /dev/sde, ID: 5 Device size: 0.00B Device slack: 0.00B Data,RAID1: 75.00GiB Data,RAID5: 5.00GiB Metadata,RAID5: 352.00MiB Unallocated: 1.74TiB
Next use the device ID to remove the device. In this case /dev/sde will be removed:
root #
btrfs device remove 5 /srv
Resizing
btrfs partitions can be resized while online using the built-in resize subcommand.
This does not affect the size of the partition itself, just the filesystem.
Set the size of the root filesystem to 128gb:
root #
btrfs filesystem resize 128g /
Add 50 gigabytes of space to the rootfs:
root #
btrfs filesystem resize +50g /
The command can also fill all available space:
root #
btrfs filesystem resize max /
Subvolúmenes
As mentioned above in the features list, Btrfs can create subvolumes. Subvolumes can be used to better organize and manage data. They become especially powerful when combined with snapshots. Important distinctions must be made between Btrfs subvolumes and subvolumes created by Logical Volume Management (LVM). Btrfs subvolumes are not block level devices, they are POSIX file namespaces.[10] They can be created at any location in the filesystem and will act like any other directory on the system with one difference: subvolumes can be mounted and unmounted. Subvolumes are nestable (subvolumes can be created inside other subvolumes), and easily created or removed.
A subvolume cannot be created across different Btrfs filesystems. If /dev/sda and /dev/sdb both contain separate (non-RAID) Btrfs filesystems, there is no way a subvolume can expand across the two filesystems. The snapshot can be moved from one filesystem to another, but it cannot span across the two. It must be on /dev/sda or /dev/sdb.
Create
To create a subvolume, issue the following command inside a Btrfs filesystem's name space:
root #
btrfs subvolume create <nombre-destino>
Replace <dest-name>
with the desired destination and subvolume name. For example, if a Btrfs filesystem exists at /mnt/btrfs, a subvolume could be created inside it using the following command:
root #
btrfs subvolume create /mnt/btrfs/subvolumen1
List
To see the subvolume(s) that have been created, use the subvolume list
command followed by a Btrfs filesystem location. If the current directory is somewhere inside a Btrfs filesystem, the following command will display the subvolume(s) that exist on the filesystem:
root #
btrfs subvolume list .
If a Btrfs filesystem with subvolumes exists at the mount point created in the example command above, the output from the list command will look similar to the following:
root #
btrfs subvolume list /mnt/btrfs
ID 309 gen 102913 top level 5 path mnt/btrfs/subvolumen1
Remove
All available subvolume paths in a Btrfs filesystem can be seen using the list command above.
Subvolumes can be properly removed by using the subvolume delete
command, followed by the path to the subvolume:
root #
btrfs subvolume delete <ruta-al-subvolumen>
As above, replace <subvolume-path>
with the actual path to the subvolume to be removed. To delete the subvolume used in the examples above, the following command would be issued:
root #
btrfs subvolume delete /mnt/btrfs/subvolumen1
Delete subvolume (no-commit): '/mnt/btrfs/subvolumen1'
Snapshots
Snapshots are subvolumes that share data and metadata with other subvolumes. This is made possible by Btrfs' Copy on Write (CoW) ability.[10] Snapshots can be used for several purposes, one of which is to create backups of file system structures at specific points in time.
If the root filesystem is Btrfs, it is possible to create a snapshot using the subvolume snapshot
commands:
root #
mkdir -p /mnt/backup/rootfs
root #
btrfs subvolume snapshot / /mnt/backup/rootfs/
The following small shell script can be added to a timed cron job to create a timestamped snapshot backup of a Btrfs formatted root filesystem. The timestamps can be adjusted to whatever is preferred by the user.
#!/bin/bash
NOW=$(date +"%Y-%m-%d_%H:%M:%S")
if [ ! -e /mnt/backup ]; then
mkdir -p /mnt/backup
fi
cd /
/sbin/btrfs subvolume snapshot / "/mnt/backup/backup_${NOW}"
Mounting
A subvolume can be mounted in a location different from where it was created, or users can choose to not mount them at all. For example, a user could create a Btrfs filesystem in /mnt/btrfs and create /mnt/btrfs/home and /mnt/btrfs/gentoo-repo subvolumes. The subvolumes could then be mounted at /home and /var/db/repos/gentoo, with the original top level subvolume left unmounted. This results in a configuration where the subvolumes' relative path from the top level subvolume is different from their actual path.
To mount a subvolume, perform the following command, where <rel-path>
is the relative path of the subvolume from the top level subvolume, obtainable through the subvolume list
command:
root #
mount -o subvol=<ruta-relativa> <dispositivo> <puntodemontaje>
Similarly, the filesystem tab can be updated to mount a Btrfs subvolume:
<device> <mountpoint> btrfs subvol=<rel-path> 0 2
Troubleshooting
Filesystem check
With a failing disk or corrupted data, it may be necessary to run the a filesystem check. Typically filesystem check commands are handled through the fsck. prefix, but for btrfs filesystems, checks are handled via the btrfs check subcommand:
root #
btrfs check --progress /dev/<device>
Checking multi-device filesystems are handled by passing any one of the devices in the filesystem to btrfs check. As long as all of the devices are available the check should run.
Multi device filesystem mount fails
After ungracefully removing one or more devices from a multi device filesystem, attempting to mount the filesystem will fail:
root #
mnt /srv
mount: /srv: wrong fs type, bad option, bad superblock on /dev/sdb, missing codepage or helper program, or other error.
This type of mount failure could be caused by missing one or more devices from the multi device filesystem. Missing devices can be detected by using the filesystem show subcommand. In the following example /dev/sdb is one of the devices still connected to the multi device filesystem:
root #
btrfs filesystem show /dev/sdb
Label: none uuid: 9e7e9824-d66b-4a9c-a05c-c4245accabe99 Total devices 5 FS bytes used 2.50TiB devid 1 size 1.82TiB used 817.03GiB path /dev/sdc devid 3 size 1.82TiB used 817.00GiB path /dev/sdb devid 5 size 10.91TiB used 2.53TiB path /dev/sde devid 6 size 10.91TiB used 2.53TiB path /dev/sdd *** Some devices missing
Missing device can be ungracefully dropped from the filesystem by using the following command:
root #
btrfs device delete missing /srv
If the multi device filesystem is in RAID 0 mode, then data loss will occur!
Using with VM disk images
When using Btrfs with virtual machine disk images, it is best to disable copy-on-write on the disk images in order to speed up IO performance. This can only be performed on files that are newly created. It also possible to disable CoW on all files created within a certain directory. For example, using the chattr command:
root #
chattr +C /var/lib/libvirt/images
Clear the free space cache
It is possible to clear Btrfs' free space cache by mounting the filesystem with the clear_cache
mount option. For example:
root #
mount -o clear_cache /ruta/a/dispositivo /ruta/a/puntodemontaje
Btrfs hogging memory (disk cache)
When utilizing some of Btrfs' special abilities (like making many --reflink
copies or creating high amounts of snapshots), a lot of memory can be consumed and not freed fast enough by the kernel's inode cache. This issue can go undiscovered since memory dedicated to the disk cache might not be clearly visible in traditional system monitoring utilities. The slabtop utility (available as part of the sys-process/procps package) was specifically created to determine how much memory kernel objects are consuming:
Active / Total Objects (% used) : 2259363 / 2338091 (96.6%) Active / Total Slabs (% used) : 467797 / 467803 (100.0%) Active / Total Caches (% used) : 83 / 175 (47.4%) Active / Total Size (% used) : 1489775.62K / 1512200.52K (98.5%) Minimum / Average / Maximum Object : 0.02K / 0.65K / 4096.00K
user $
sync
root #
echo 2 > /proc/sys/vm/drop_caches
root #
echo 3 > /proc/sys/vm/drop_caches
While the above commands are non-destructive (as long as a sync was completed before running them), they could seriously but temporarily slow down the system while the kernel loads only the necessary items back into memory. Think twice before running the above commands for systems under heavy load!
Mounting Btrfs fails, returning mount: unknown filesystem type 'btrfs'
#
cd /usr/src/linux
#
make menuconfig
#
make && make modules_install
#
cp arch/x86_64/boot/bzImage /boot
#
mv /boot/bzImage /boot/whatever_kernel_filename
#
genkernel --install initramfs
Btrfs root doesn't boot
root #
genkernel --btrfs initramfs
See also
External resources
References
- ↑ Examining btrfs, Linux’s perpetually half-finished filesystem
- ↑ man page for btrfs-filesystem(8), Btrfs wiki. Retrieved on 6th February, 2017.
- ↑ https://btrfs.wiki.kernel.org/index.php/Compression#Can_I_set_the_compression_level.3F
- ↑ https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f51d2b59120ff364a5e612a594ed358767e1cd09
- ↑ https://btrfs.wiki.kernel.org/index.php/Compression#How_can_I_determine_compressed_size_of_a_file.3F
- ↑ Article mentioning that parity RAID code has multiple serious data-loss bugs, Btrfs wiki. Retrieved on January 1st, 2017.
- ↑ Michael Larabel, Btrfs RAID56 "Mostly OK", Phoronix. July 8, 2017.
- ↑ btrfs: scrub: Fix RAID56 recovery race condition, source commit, April 18th 2017.
- ↑ GIT PULL Btrfs from Chris Mason, Linux kernel mailinglist, May 9th 2017.
- ↑ 10.0 10.1 Page explaining the differences between subvolumes and logical volumes in LVM, Btrfs wiki. Retrieved on April 2nd, 2023.
- ↑ Documentation for /proc/sys/vm/*, Kernel.org. Retrieved on January 1st, 2017.