Handbook:IA64/Installation/Kernel/it
Opzionale: Installare il firmware
Firmware
Suggested: Linux Firmware
On many systems, non-FOSS firmware is required for certain hardware to function. The sys-kernel/linux-firmware package contains firmware for many, but not all, devices.
Most wireless cards and GPUs require firmware to function.
root #
emerge --ask sys-kernel/linux-firmware
Installing certain firmware packages often requires accepting the associated firmware licenses. If necessary, visit the license handling section of the Handbook for help on accepting licenses.
Firmware Loading
Firmware files are typically loaded when the associated kernel module is loaded. This means the firmware must be built into the kernel using CONFIG_EXTRA_FIRMWARE if the kernel module is set to Y instead of M. In most cases, building-in a module which required firmware can complicate or break loading.
sys-kernel/installkernel
Installkernel may be used to automate the kernel installation, initramfs generation, unified kernel image generation and/or bootloader configuration among other things. sys-kernel/installkernel implements two paths of achieving this: the traditional installkernel originating from Debian and systemd's kernel-install. Which one to choose depends, among other things, on the system's bootloader. By default, systemd's kernel-install is used on systemd profiles, while the traditional installkernel is the default for other profiles.
Bootloader
Now is the time to think about which bootloader the user wants for the system, if unsure, follow the 'Traditional layout' subsection below.
GRUB
Users of GRUB can use either systemd's kernel-install or the traditional Debian installkernel. The systemd USE flag switches between these implementations. To automatically run grub-mkconfig when installing the kernel, enable the grub USE flag.
/etc/portage/package.use/installkernel
sys-kernel/installkernel grub
root #
emerge --ask sys-kernel/installkernel
Traditional layout, other bootloaders (e.g. (e)lilo, syslinux, etc.)
The traditional /boot layout (for e.g. (e)LILO, syslinux, etc.) is used by default if the grub, systemd-boot, efistub and uki USE flags are not enabled. No further action is required.
Initramfs
An initial ram-based file system, or initramfs, may be required for a system to boot. A wide of variety of cases may necessitate one, but common cases include:
- Kernels where storage/filesystem drivers are modules.
- Layouts with /usr/ or /var/ on separate partitions.
- Encrypted root filesystems.
Distribution kernels are designed to be used with an initramfs, as many storage and filesystem drivers are built as modules.
In addition to mounting the root filesystem, an initramfs may also perform other tasks such as:
- Running file system consistency check fsck, a tool to check and repair consistency of a file system in such events of uncleanly shutdown a system.
- Providing a recovery environment in the event of late-boot failures.
Installkernel can automatically generate an initramfs when installing the kernel if the dracut or ugrd USE flag is enabled:
/etc/portage/package.use/installkernel
sys-kernel/installkernel dracut
root #
emerge --ask sys-kernel/installkernel
Kernel configuration and compilation
It can be a wise move to use the dist-kernel on the first boot as it provides a very simple method to rule out system issues and kernel config issues. Always having a known working kernel to fallback on can speed up debugging and alleviate anxiety when updating that your system will no longer boot.
Adesso è ora di configurare e compilare i sorgenti del kernel. Ci sono due approcci per farlo:
During the installation phase of Gentoo, only one kernel type should be installed i.e. either the sys-kernel/gentoo-kernel-bin or sys-kernel/gentoo-sources.
Ranked from least involved to most involved:
- Il kernel sarà configurato e compilato manualmente.
- Un programma di nome genkernel sarà usato per compilare ed installare il kernel automaticamente.
Il nucleo su cui tutte le distribuzioni si basano è il kernel Linux, che fa da intermediario tra i programmi dell'utente ed il sistema fisico (hardware). Gentoo offre ai suoi utenti numerosi possibili sorgenti per il kernel. Una lista completa con descrizioni è disponibile alla pagina panoramica sui kernel.
Kernel installation tasks such as copying the kernel image to /boot or the EFI System Partition, generating an initramfs and/or Unified Kernel Image, updating bootloader configuration, can be automated with installkernel. Users may wish to configure and install sys-kernel/installkernel before proceeding. See the Kernel installation section below for more more information.
Installare i sorgenti
When installing and compiling the kernel for ia64-based systems, Gentoo recommends the sys-kernel/gentoo-sources package.
Choose an appropriate kernel source and install it using emerge:
root #
emerge --ask sys-kernel/gentoo-sources
Questo comando installerà i sorgenti del kernel Linux in /usr/src/ in cui un collegamento simbolico chiamato linux punterà ai sorgenti appena installati:
It is conventional for a /usr/src/linux symlink to be maintained, such that it refers to whichever sources correspond with the currently running kernel. However, this symbolic link will not be created by default. An easy way to create the symbolic link is to utilize eselect's kernel module.
For further information regarding the purpose of the symlink, and how to manage it, please refer to Kernel/Upgrade.
First, list all installed kernels:
root #
eselect kernel list
Available kernel symlink targets: [1] linux-6.6.21-gentoo
In order to create a symbolic link called linux, use:
root #
eselect kernel set 1
root #
ls -l /usr/src/linux
lrwxrwxrwx 1 root root 12 Oct 13 11:04 /usr/src/linux -> linux-6.6.21-gentoo
Predefinito: Configurazione manuale
In case it was missed, this section requires the kernel sources to be installed. Be sure to obtain the relevant kernel sources, then return here for the rest of section.
Manually configuring a kernel is commonly seen as one of the most difficult procedures a system administrator has to perform. Nothing is less true - after configuring a few kernels no one remembers that it was difficult! There are two ways for a Gentoo user to manage a manual kernel system, both of which are listed below:
Modprobed-db process
A very easy way to manage the kernel is to first install sys-kernel/gentoo-kernel-bin and use the sys-kernel/modprobed-db to collect information about what the system requires. modprobed-db is a tool which monitors the system via crontab to add all modules of all devices over the system's life to make sure it everything a user needs is supported. For example, if an Xbox controller is added after installation, then modprobed-db will add the modules to be built next time the kernel is rebuilt. More on this topic can be found in the Modprobed-db article.
Manual process
This method allows a user to have full control of how their kernel is built with as minimal help from outside tools as they wish. Some could consider this as making it hard for the sake of it.
Comunque, una cosa è vera: è di vitale importanza conoscere il sistema quando si configura il kernel manualmente. La maggior parte delle informazioni si possono raccogliere installando sys-apps/pciutils che contiene il comando lspci:
root #
emerge --ask sys-apps/pciutils
Dentro la chroot (radice cambiata), si possono ignorare con sicurezza gli avvisi pcilib (come pcilib: cannot open /sys/bus/pci/devices) che lspci potrebbere tirar fuori.
Un'altra fonte di informazioni è lsmod per vedere quali moduli del kernel il CD di installazione usa, poiché ciò potrebbe dare buone idee su cosa abilitare.
Adesso bisogna spostarsi nella directory del sorgente del kernel ed eseguire make menuconfig. Questo farà apparire il menù di configurazione.
root #
cd /usr/src/linux
root #
make menuconfig
The kernel has a method of autodetecting the modules currently being used on the installcd which will give a great starting point to allow a user to configure their own. This can be called by using:
root #
make localmodconfig
It's now time to configure using nconfig:
root #
make nconfig
La configurazione del kernel Linux ha molte, molte sezioni. Per prima cosa saranno elencate le opzioni che devono essere attivate (altrimenti Gentoo non funzionerà, o non funzionerà correttamente senza modifiche aggiuntive). Esiste anche una guida alla configurazione del kernel Gentoo nel wiki di Gentoo che potrebbe aiutare ulteriormente.
Enabling required options
When using sys-kernel/gentoo-sources, it is strongly recommend the Gentoo-specific configuration options be enabled. These ensure that a minimum of kernel features required for proper functioning is available:
Gentoo Linux --->
[*] Gentoo Linux support
[*] Linux dynamic and persistent device naming (userspace devfs) support
[*] Select options required by Portage features
Support for init systems, system and service managers --->
[*] OpenRC, runit and other script based systems and managers
[*] systemd
Naturally the choice in the last two lines depends on the selected init system (OpenRC vs. systemd). It does not hurt to have support for both init systems enabled.
When using sys-kernel/vanilla-sources, the additional selections for init systems will be unavailable. Enabling support is possible, but goes beyond the scope of the handbook.
Enabling support for typical system components
Assicurarsi che ogni driver vitale per l'avvio del sistema (come un controller SCSI, ecc.) sia compilato nel kernel e non come modulo, altrimenti il sistema non sarà in grado di avviarsi completamente.
Proseguire selezionando l'esatto tipo di processore. È anche raccomandato abilitare le funzionalità MCE (se disponibili) così che gli utenti possano ricevere notifiche su eventuali problemi hardware. Su alcune architetture (come x86_64), questi errori non sono scritti su dmesg, ma su /dev/mcelog. Ciò richiede il pacchetto app-admin/mcelog.
Selezionare anche Maintain a devtmpfs file system to mount at /dev (Mantenere un file system devtmpfs da montare su /dev) così che i file dei dispositivi critici siano già presenti durante il processo di avvio (CONFIG_DEVTMPFS e CONFIG_DEVTMPFS_MOUNT):
Device Drivers --->
Generic Driver Options --->
[*] Maintain a devtmpfs filesystem to mount at /dev
[ ] Automount devtmpfs at /dev, after the kernel mounted the rootfs
Verificare che il supporto dischi SCSI sia stato attivato (CONFIG_BLK_DEV_SD):
Device Drivers --->
SCSI device support --->
<*> SCSI disk support
Device Drivers --->
<*> Serial ATA and Parallel ATA drivers (libata) --->
[*] ATA ACPI Support
[*] SATA Port Multiplier support
<*> AHCI SATA support (ahci)
[*] ATA BMDMA support
[*] ATA SFF support (for legacy IDE and PATA)
<*> Intel ESB, ICH, PIIX3, PIIX4 PATA/SATA support (ata_piix)
Verify basic NVMe support has been enabled:
Device Drivers --->
<*> NVM Express block device
Device Drivers --->
NVME Support --->
<*> NVM Express block device
It does not hurt to enable the following additional NVMe support:
[*] NVMe multipath support
[*] NVMe hardware monitoring
<M> NVM Express over Fabrics FC host driver
<M> NVM Express over Fabrics TCP host driver
<M> NVMe Target support
[*] NVMe Target Passthrough support
<M> NVMe loopback device support
<M> NVMe over Fabrics FC target driver
< > NVMe over Fabrics FC Transport Loopback Test driver (NEW)
<M> NVMe over Fabrics TCP target support
Adesso andare su File Systems e selezionare il supporto ai file system desiderati. Non si compili il file system usato per la radice (root) come modulo, altrimenti Gentoo non sarà in grado di montare questa partizione. Selezionare anche Virtual memory e /proc file system. Selezionare una o più delle seguenti opzioni come richiesto dal sistema (CONFIG_EXT2_FS, CONFIG_EXT3_FS, CONFIG_EXT4_FS, CONFIG_MSDOS_FS, CONFIG_VFAT_FS, CONFIG_PROC_FS, e CONFIG_TMPFS):
File systems --->
<*> Second extended fs support
<*> The Extended 3 (ext3) filesystem
<*> The Extended 4 (ext4) filesystem
<*> Reiserfs support
<*> JFS filesystem support
<*> XFS filesystem support
<*> Btrfs filesystem support
DOS/FAT/NT Filesystems --->
<*> MSDOS fs support
<*> VFAT (Windows-95) fs support
Pseudo Filesystems --->
[*] /proc file system support
[*] Tmpfs virtual memory file system support (former shm fs)
Se PPPoE è usato per connettersi ad Internet, o un modem dial-up, allora abilitare le seguenti opzioni (CONFIG_PPP, CONFIG_PPP_ASYNC, e CONFIG_PPP_SYNC_TTY):
Device Drivers --->
Network device support --->
<*> PPP (point-to-point protocol) support
<*> PPP support for async serial ports
<*> PPP support for sync tty ports
Le due opzioni di compressione non causaranno danni, ma non sono assolutamente necessarie, né lo è l'opzione PPP attraverso Ethernet, che potrebbe essere utilizzata solo da ppp quando configurata per eseguire PPPoE in modalità kernel.
Non si dimentichi di includere il supporto nel kernel per le schede di rete (Ethernet o wireless).
La maggior parte dei sistemi dispone di più core, quindi è importante attivare Symmetric multi-processing support (CONFIG_SMP):
Processor type and features --->
[*] Symmetric multi-processing support
Nei sistemi multi-core, ogni core conta come un processore.
Se verranno utilizzati dispositivi di input USB (come tastiera o mouse) o altri dispositivi USB, non si dimentichi di abilitare anche quelli (CONFIG_HID_GENERIC e CONFIG_USB_HID, CONFIG_USB_SUPPORT, CONFIG_USB_XHCI_HCD, CONFIG_USB_EHCI_HCD, CONFIG_USB_OHCI_HCD):
Device Drivers --->
HID support --->
-*- HID bus support
<*> Generic HID driver
[*] Battery level reporting for HID devices
USB HID support --->
<*> USB HID transport layer
[*] USB support --->
<*> xHCI HCD (USB 3.0) support
<*> EHCI HCD (USB 2.0) support
<*> OHCI HCD (USB 1.1) support
Optional: Signed kernel modules
To automatically sign the kernel modules enable CONFIG_MODULE_SIG_ALL:
[*] Enable loadable module support
-*- Module signature verification
[*] Automatically sign all modules
Which hash algorithm should modules be signed with? (Sign modules with SHA-512) --->
Optionally change the hash algorithm if desired.
To enforce that all modules are signed with a valid signature, enable CONFIG_MODULE_SIG_FORCE as well:
[*] Enable loadable module support
-*- Module signature verification
[*] Require modules to be validly signed
[*] Automatically sign all modules
Which hash algorithm should modules be signed with? (Sign modules with SHA-512) --->
To use a custom key, specify the location of this key in CONFIG_MODULE_SIG_KEY. If unspecified, the kernel build system will generate a key. It is recommended to generate one manually instead. This can be done with:
root #
openssl req -new -nodes -utf8 -sha256 -x509 -outform PEM -out kernel_key.pem -keyout kernel_key.pem
OpenSSL will ask some questions about the user generating the key, it is recommended to fill in these questions as detailed as possible.
Store the key in a safe location, at the very least the key should be readable only by the root user. Verify this with:
root #
ls -l kernel_key.pem
-r-------- 1 root root 3164 Jan 4 10:38 kernel_key.pem
If this outputs anything other then the above, correct the permissions with:
root #
chown root:root kernel_key.pem
root #
chmod 400 kernel_key.pem
-*- Cryptographic API --->
Certificates for signature checking --->
(/path/to/kernel_key.pem) File name or PKCS#11 URI of module signing key
To also sign external kernel modules installed by other packages via linux-mod-r1.eclass
, enable the modules-sign USE flag globally:
/etc/portage/make.conf
Enable module signingUSE="modules-sign"
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
# Optionally, when using custom signing keys.
MODULES_SIGN_KEY="/path/to/kernel_key.pem"
MODULES_SIGN_CERT="/path/to/kernel_key.pem" # Only required if the MODULES_SIGN_KEY does not also contain the certificate
MODULES_SIGN_HASH="sha512" # Defaults to sha512
MODULES_SIGN_KEY and MODULES_SIGN_CERT may point to different files. For this example, the pem file generated by OpenSSL includes both the key and the accompanying certificate, and thus both variables are set to the same value.
Handbook:IA64/Blocks/Kernel/it
Deprecated: Genkernel
Genkernel should only be considered by users with a required need that only Genkernel can meet. For others, it is recommended to use the Distribution kernel or manually compile their own as it will make maintaining a Gentoo system a lot more simple. An example of why genkernel is more difficult to manage is the lack of integration with sys-kernel/installkernel. This means a user will not get the same level of automation as provided by the other methods; for example, Unified Kernel Images will need to be created manually when using Genkernel.
Users still wishing to use Genkernel should see the Genkernel article for more information.
Moduli del kernel
Configurazione dei moduli
Hardware modules are optional to be listed manually. udev will normally load all hardware modules that are detected to be connected in most cases. However, it is not harmful for modules that will be automatically loaded to be listed. Modules cannot be loaded twice; they are either loaded or unloaded. Sometimes exotic hardware requires help to load their drivers.
Elencare i moduli, che serve caricare automaticamente, su /etc/conf.d/modules. Anche le opzioni extra possono essere aggiunte ai moduli se necessario.
Per visualizzare tutti i moduli disponibili, eseguire il seguente comando find. Non dimenticarsi di sostituire "<versione del kernel>" con la versione del kernel appena compilata:
root #
find /lib/modules/<versione del kernel>/ -type f -iname '*.o' -or -iname '*.ko' | less
Force loading particular kernel modules
Per esempio, per caricare automaticamente il modulo 3c59x.ko (che è il driver per una famiglia specifica di schede di rete 3Com), modificare il file /etc/conf.d/modules ed inserirvi il nome del modulo.
root #
nano -w /etc/conf.d/modules
modules="3c59x"
Note that the module's .ko file suffix is insignificant to the loading mechanism and left out of the configuration file:
/etc/modules-load.d/network.conf
Force loading 3c59x module3c59x
Continuare l'installazione con la Configurazione del sistema.