Handbook:Parts/Installation/Kernel
Opzionale: Installare il firmware
Firmware
Linux Firmware
Alcuni driver richiedono firmware addizionali da installare nel sistema affinché funzioni. Questo caso riguarda spesso le interfacce di rete, specialmente le interfacce di rete wireless. La maggior parte dei firmware si trovano su sys-kernel/linux-firmware:
It is recommended to have the sys-kernel/linux-firmware package installed before the initial system reboot in order to have the firmware available in the event that it is necessary:
root #
emerge --ask sys-kernel/linux-firmware
Installing certain firmware packages often requires accepting the associated firmware licenses. If necessary, visit the license handling section of the Handbook for help on accepting licenses.
It is important to note that kernel symbols that are built as modules (M) will load their associated firmware files from the filesystem when they are loaded by the kernel. It is not necessary to include the device's firmware files into the kernel's binary image for symbols loaded as modules.
Architecture specific firmware
Placeholder for architecture-specific firmware information
Microcode
In addition to discrete graphics hardware and network interfaces, CPUs also can require firmware updates. Typically this kind of firmware is referred to as microcode. Newer revisions of microcode are sometimes necessary to patch instability, security concerns, or other miscellaneous bugs in CPU hardware.
Microcode updates for AMD CPUs are distributed within the aforementioned sys-kernel/linux-firmware package. Microcode for Intel CPUs can be found within the sys-firmware/intel-microcode package, which will need to be installed separately. See the Microcode article for more information on how to apply microcode updates.
Kernel configuration and compilation
Adesso è ora di configurare e compilare i sorgenti del kernel. Ci sono due approcci per farlo:
Ranked from least involved to most involved:
- Il kernel sarà configurato e compilato manualmente.
- Un programma di nome genkernel sarà usato per compilare ed installare il kernel automaticamente.
Il nucleo su cui tutte le distribuzioni si basano è il kernel Linux, che fa da intermediario tra i programmi dell'utente ed il sistema fisico (hardware). Gentoo offre ai suoi utenti numerosi possibili sorgenti per il kernel. Una lista completa con descrizioni è disponibile alla pagina panoramica sui kernel.
Kernel installation tasks such as, copying the kernel image to /boot or the EFI System Partition, generating an initramfs and/or Unified Kernel Image, updating bootloader configuration, can be automated with installkernel. Users may wish to configure and install sys-kernel/installkernel before proceeding. See the Kernel installation section below for more more information.
Distribution kernels
Distribution Kernels are ebuilds that cover the complete process of unpacking, configuring, compiling, and installing the kernel. The primary advantage of this method is that the kernels are updated to new versions by the package manager as part of @world upgrade. This requires no more involvement than running an emerge command. Distribution kernels default to a configuration supporting the majority of hardware, however two mechanisms are offered for customization: savedconfig and config snippets. See the project page for more details on configuration.
Optional: Signed kernel modules
The kernel modules in the prebuilt distribution kernel (sys-kernel/gentoo-kernel-bin) are already signed. To sign the modules of kernels built from source enable the modules-sign USE flag, and optionally specify which key to use for signing in /etc/portage/make.conf:
USE="modules-sign"
# Optionally, to use custom signing keys.
MODULES_SIGN_KEY="/path/to/kernel_key.pem"
MODULES_SIGN_CERT="/path/to/kernel_key.pem" # Only required if the MODULES_SIGN_KEY does not also contain the certificate.
MODULES_SIGN_HASH="sha512" # Defaults to sha512.
If MODULES_SIGN_KEY is not specified the kernel build system will generate a key, it will be stored in /usr/src/linux-x.y.z/certs. It is recommended to manually generate a key to ensure that it will be the same for each kernel release. A key may be generated with:
root #
openssl req -new -nodes -utf8 -sha256 -x509 -outform PEM -out kernel_key.pem -keyout kernel_key.pem
The MODULES_SIGN_KEY and MODULES_SIGN_CERT may be different files. For this example the pem file generated by OpenSSL includes both the key and the accompanying certificate, and thus both variables are set to the same value.
OpenSSL will ask some questions about the user generating the key, it is recommended to fill in these questions as detailed as possible.
Store the key in a safe location, at the very least the key should be readable only by the root user. Verify this with:
root #
ls -l kernel_key.pem
-r-------- 1 root root 3164 Jan 4 10:38 kernel_key.pem
If this outputs anything other then the above, correct the permissions with:
root #
chown root:root kernel_key.pem
root #
chmod 400 kernel_key.pem
Optional: Signing the kernel image (Secure Boot)
The kernel image in the prebuilt distribution kernel (sys-kernel/gentoo-kernel-bin) is already signed for use with Secure Boot. To sign the kernel image of kernels built from source enable the secureboot USE flag, and optionally specify which key to use for signing in /etc/portage/make.conf. Note that signing the kernel image for use with secureboot requires that the kernel modules are also signed, the same key may be used to sign both the kernel image and the kernel modules:
USE="modules-sign secureboot"
# Optionally, to use custom signing keys.
MODULES_SIGN_KEY="/path/to/kernel_key.pem"
MODULES_SIGN_CERT="/path/to/kernel_key.pem" # Only required if the MODULES_SIGN_KEY does not also contain the certificate.
MODULES_SIGN_HASH="sha512" # Defaults to sha512.
# Optionally, to boot with secureboot enabled, may be the same or different signing key.
SECUREBOOT_SIGN_KEY="/path/to/kernel_key.pem"
SECUREBOOT_SIGN_CERT="/path/to/kernel_key.pem"
The SECUREBOOT_SIGN_KEY and SECUREBOOT_SIGN_CERT may be different files. For this example the pem file generated by OpenSSL includes both the key and the accompanying certificate, and thus both variables are set to the same value.
For this example the same key that was generated to sign the modules is used to sign the kernel image. It is also possible to generate and use a second separate key for signing the kernel image. The same OpenSSL command as in the previous section may be used again.
See the above section for instructions on generating a new key, the steps may be repeated if a separate key should be used to sign the kernel image.
To successfully boot with Secure Boot enabled, the used bootloader must also be signed and the certificate must be accepted by the UEFI firmware or Shim. This will be explained later in the handbook.
Installing a distribution kernel
To build a kernel with Gentoo patches from source, type:
root #
emerge --ask sys-kernel/gentoo-kernel
System administrators who want to avoid compiling the kernel sources locally can instead use precompiled kernel images:
root #
emerge --ask sys-kernel/gentoo-kernel-bin
Distribution Kernels, such as sys-kernel/gentoo-kernel and sys-kernel/gentoo-kernel-bin, by default, expect to be installed alongside an initramfs. Before running emerge to install the kernel users should ensure that sys-kernel/installkernel has been configured to utilize an initramfs generator (for example Dracut) as described in the installkernel section.
Upgrading and cleaning up
Once the kernel is installed, the package manager will automatically update it to newer versions. The previous versions will be kept until the package manager is requested to clean up stale packages. To reclaim disk space, stale packages can be trimmed by periodically running emerge with the --depclean
option:
root #
emerge --depclean
Alternatively, to specifically clean up old kernel versions:
root #
emerge --prune sys-kernel/gentoo-kernel sys-kernel/gentoo-kernel-bin
By design, emerge only removes the kernel build directory. It does not actually remove the kernel modules, nor the installed kernel image. To completely clean-up old kernels, the app-admin/eclean-kernel tool may be used.
Post-install/upgrade tasks
An upgrade of a distribution kernel is capable of triggering an automatic rebuild for external kernel modules installed by other packages (for example: sys-fs/zfs-kmod or x11-drivers/nvidia-drivers). This automated behaviour is enabled by enabling the dist-kernel USE flag. When required, this same flag will also trigger re-generation of the initramfs.
It is highly recommended to enable this flag globally via /etc/portage/make.conf when using a distribution kernel:
USE="dist-kernel"
Manually rebuilding the initramfs or Unified Kernel Image
If required, manually trigger such rebuilds by, after a kernel upgrade, executing:
root #
emerge --ask @module-rebuild
If any kernel modules (e.g. ZFS) are needed at early boot, rebuild the initramfs afterward via:
root #
emerge --config sys-kernel/gentoo-kernel
root #
emerge --config sys-kernel/gentoo-kernel-bin
After installing the Distribution Kernel successfully, it is now time to proceed to the next section: Configuring the system.
Installare i sorgenti
This section is only relevant when using the following genkernel (hybrid) or manual kernel management approach.
The use of sys-kernel/installkernel is not strictly required, but highly recommended. When this package is installed, the kernel installation process will be delegated to installkernel. This allows for installing several different kernel versions side-by-side as well as managing and automating several tasks relating to kernel installation described later in the handbook. Install it now with:
root #
emerge --ask sys-kernel/installkernel
When installing and compiling the kernel for amd64-based systems, Gentoo recommends the sys-kernel/gentoo-sources package.
Choose an appropriate kernel source and install it using emerge:
root #
emerge --ask sys-kernel/gentoo-sources
Questo comando installerà i sorgenti del kernel Linux in /usr/src/ in cui un collegamento simbolico chiamato linux punterà ai sorgenti appena installati:
It is conventional for a /usr/src/linux symlink to be maintained, such that it refers to whichever sources correspond with the currently running kernel. However, this symbolic link will not be created by default. An easy way to create the symbolic link is to utilize eselect's kernel module.
For further information regarding the purpose of the symlink, and how to manage it, please refer to Kernel/Upgrade.
First, list all installed kernels:
root #
eselect kernel list
Available kernel symlink targets: [1] linux-6.6.21-gentoo
In order to create a symbolic link called linux, use:
root #
eselect kernel set 1
root #
ls -l /usr/src/linux
lrwxrwxrwx 1 root root 12 Oct 13 11:04 /usr/src/linux -> linux-6.6.21-gentoo
Predefinito: Configurazione manuale
Introduzione
In case it was missed, this section requires the kernel sources to be installed. Be sure to obtain the relevant kernel sources, then return here for the rest of section.
Configurare manualmente un kernel è spesso considerata la procedura più difficile che un utente Linux debba compiere. Niente di più falso - dopo aver configurato un paio di kernel nessuno nemmeno ricorda che fosse difficile ;)
Comunque, una cosa è vera: è di vitale importanza conoscere il sistema quando si configura il kernel manualmente. La maggior parte delle informazioni si possono raccogliere installando sys-apps/pciutils che contiene il comando lspci:
root #
emerge --ask sys-apps/pciutils
Dentro la chroot (radice cambiata), si possono ignorare con sicurezza gli avvisi pcilib (come pcilib: cannot open /sys/bus/pci/devices) che lspci potrebbere tirar fuori.
Un'altra fonte di informazioni è lsmod per vedere quali moduli del kernel il CD di installazione usa, poiché ciò potrebbe dare buone idee su cosa abilitare.
Adesso bisogna spostarsi nella directory del sorgente del kernel ed eseguire make menuconfig. Questo farà apparire il menù di configurazione.
root #
cd /usr/src/linux
root #
make menuconfig
La configurazione del kernel Linux ha molte, molte sezioni. Per prima cosa saranno elencate le opzioni che devono essere attivate (altrimenti Gentoo non funzionerà, o non funzionerà correttamente senza modifiche aggiuntive). Esiste anche una guida alla configurazione del kernel Gentoo nel wiki di Gentoo che potrebbe aiutare ulteriormente.
Abilitare le opzioni richieste
When using sys-kernel/gentoo-sources, it is strongly recommend the Gentoo-specific configuration options be enabled. These ensure that a minimum of kernel features required for proper functioning is available:
Gentoo Linux --->
Generic Driver Options --->
[*] Gentoo Linux support
[*] Linux dynamic and persistent device naming (userspace devfs) support
[*] Select options required by Portage features
Support for init systems, system and service managers --->
[*] OpenRC, runit and other script based systems and managers
[*] systemd
Naturally the choice in the last two lines depends on the selected init system (OpenRC vs. systemd). It does not hurt to have support for both init systems enabled.
When using sys-kernel/vanilla-sources, the additional selections for init systems will be unavailable. Enabling support is possible, but goes beyond the scope of the handbook.
Enabling support for typical system components
Assicurarsi che ogni driver vitale per l'avvio del sistema (come un controller SCSI, ecc.) sia compilato nel kernel e non come modulo, altrimenti il sistema non sarà in grado di avviarsi completamente.
Proseguire selezionando l'esatto tipo di processore. È anche raccomandato abilitare le funzionalità MCE (se disponibili) così che gli utenti possano ricevere notifiche su eventuali problemi hardware. Su alcune architetture (come x86_64), questi errori non sono scritti su dmesg, ma su /dev/mcelog. Ciò richiede il pacchetto app-admin/mcelog.
Selezionare anche Maintain a devtmpfs file system to mount at /dev (Mantenere un file system devtmpfs da montare su /dev) così che i file dei dispositivi critici siano già presenti durante il processo di avvio (CONFIG_DEVTMPFS e CONFIG_DEVTMPFS_MOUNT):
Device Drivers --->
Generic Driver Options --->
[*] Maintain a devtmpfs filesystem to mount at /dev
[ ] Automount devtmpfs at /dev, after the kernel mounted the rootfs
Verificare che il supporto dischi SCSI sia stato attivato (CONFIG_BLK_DEV_SD):
Device Drivers --->
SCSI device support --->
<*> SCSI disk support
Device Drivers --->
<*> Serial ATA and Parallel ATA drivers (libata) --->
[*] ATA ACPI Support
[*] SATA Port Multiplier support
<*> AHCI SATA support (ahci)
[*] ATA BMDMA support
[*] ATA SFF support (for legacy IDE and PATA)
<*> Intel ESB, ICH, PIIX3, PIIX4 PATA/SATA support (ata_piix)
Verify basic NVMe support has been enabled:
Device Drivers --->
<*> NVM Express block device
Device Drivers --->
NVME Support --->
<*> NVM Express block device
It does not hurt to enable the following additional NVMe support:
[*] NVMe multipath support
[*] NVMe hardware monitoring
<M> NVM Express over Fabrics FC host driver
<M> NVM Express over Fabrics TCP host driver
<M> NVMe Target support
[*] NVMe Target Passthrough support
<M> NVMe loopback device support
<M> NVMe over Fabrics FC target driver
< > NVMe over Fabrics FC Transport Loopback Test driver (NEW)
<M> NVMe over Fabrics TCP target support
Adesso andare su File Systems e selezionare il supporto ai file system desiderati. Non si compili il file system usato per la radice (root) come modulo, altrimenti Gentoo non sarà in grado di montare questa partizione. Selezionare anche Virtual memory e /proc file system. Selezionare una o più delle seguenti opzioni come richiesto dal sistema (CONFIG_EXT2_FS, CONFIG_EXT3_FS, CONFIG_EXT4_FS, CONFIG_MSDOS_FS, CONFIG_VFAT_FS, CONFIG_PROC_FS, e CONFIG_TMPFS):
File systems --->
<*> Second extended fs support
<*> The Extended 3 (ext3) filesystem
<*> The Extended 4 (ext4) filesystem
<*> Reiserfs support
<*> JFS filesystem support
<*> XFS filesystem support
<*> Btrfs filesystem support
DOS/FAT/NT Filesystems --->
<*> MSDOS fs support
<*> VFAT (Windows-95) fs support
Pseudo Filesystems --->
[*] /proc file system support
[*] Tmpfs virtual memory file system support (former shm fs)
Se PPPoE è usato per connettersi ad Internet, o un modem dial-up, allora abilitare le seguenti opzioni (CONFIG_PPP, CONFIG_PPP_ASYNC, e CONFIG_PPP_SYNC_TTY):
Device Drivers --->
Network device support --->
<*> PPP (point-to-point protocol) support
<*> PPP support for async serial ports
<*> PPP support for sync tty ports
Le due opzioni di compressione non causaranno danni, ma non sono assolutamente necessarie, né lo è l'opzione PPP attraverso Ethernet, che potrebbe essere utilizzata solo da ppp quando configurata per eseguire PPPoE in modalità kernel.
Non si dimentichi di includere il supporto nel kernel per le schede di rete (Ethernet o wireless).
La maggior parte dei sistemi dispone di più core, quindi è importante attivare Symmetric multi-processing support (CONFIG_SMP):
Processor type and features --->
[*] Symmetric multi-processing support
Nei sistemi multi-core, ogni core conta come un processore.
Se verranno utilizzati dispositivi di input USB (come tastiera o mouse) o altri dispositivi USB, non si dimentichi di abilitare anche quelli (CONFIG_HID_GENERIC e CONFIG_USB_HID, CONFIG_USB_SUPPORT, CONFIG_USB_XHCI_HCD, CONFIG_USB_EHCI_HCD, CONFIG_USB_OHCI_HCD):
Device Drivers --->
HID support --->
-*- HID bus support
<*> Generic HID driver
[*] Battery level reporting for HID devices
USB HID support --->
<*> USB HID transport layer
[*] USB support --->
<*> xHCI HCD (USB 3.0) support
<*> EHCI HCD (USB 2.0) support
<*> OHCI HCD (USB 1.1) support
Optional: Signed kernel modules
To automatically sign the kernel modules enable CONFIG_MODULE_SIG_ALL:
[*] Enable loadable module support
-*- Module signature verification
[*] Automatically sign all modules
Which hash algorithm should modules be signed with? (Sign modules with SHA-512) --->
Optionally change the hash algorithm if desired.
To enforce that all modules are signed with a valid signature, enable CONFIG_MODULE_SIG_FORCE as well:
[*] Enable loadable module support
-*- Module signature verification
[*] Require modules to be validly signed
[*] Automatically sign all modules
Which hash algorithm should modules be signed with? (Sign modules with SHA-512) --->
To use a custom key, specify the location of this key in CONFIG_MODULE_SIG_KEY, if unspecified the kernel build system will generate a key. It is recommended to generate one manually instead. This can be done with:
root #
openssl req -new -nodes -utf8 -sha256 -x509 -outform PEM -out kernel_key.pem -keyout kernel_key.pem
OpenSSL will ask some questions about the user generating the key, it is recommended to fill in these questions as detailed as possible.
Store the key in a safe location, at the very least the key should be readable only by the root user. Verify this with:
root #
ls -l kernel_key.pem
-r-------- 1 root root 3164 Jan 4 10:38 kernel_key.pem
If this outputs anything other then the above, correct the permissions with:
root #
chown root:root kernel_key.pem
root #
chmod 400 kernel_key.pem
-*- Cryptographic API --->
Certificates for signature checking --->
(/path/to/kernel_key.pem) File name or PKCS#11 URI of module signing key
To also sign external kernel modules installed by other packages via linux-mod-r1.eclass
, enable the modules-sign USE flag globally:
USE="modules-sign"
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
# Optionally, when using custom signing keys.
MODULES_SIGN_KEY="/path/to/kernel_key.pem"
MODULES_SIGN_CERT="/path/to/kernel_key.pem" # Only required if the MODULES_SIGN_KEY does not also contain the certificate
MODULES_SIGN_HASH="sha512" # Defaults to sha512
The MODULES_SIGN_KEY and MODULES_SIGN_CERT may be different files. For this example the pem file generated by OpenSSL includes both the key and the accompanying certificate, and thus both variables are set to the same value.
Optional: Signing the kernel image (Secure Boot)
When signing the kernel image (for use on systems with Secure Boot enabled) it is recommended to set the following kernel config options:
General setup --->
Kexec and crash features --->
[*] Enable kexec system call
[*] Enable kexec file based system call
[*] Verify kernel signature during kexec_file_load() syscall
[*] Require a valid signature in kexec_file_load() syscall
[*] Enable ""image"" signature verification support
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
[*] Enable loadable module support
-*- Module signature verification
[*] Require modules to be validly signed
[*] Automatically sign all modules
Which hash algorithm should modules be signed with? (Sign modules with SHA-512) --->
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
Security options --->
[*] Integrity subsystem
[*] Basic module for enforcing kernel lockdown
[*] Enable lockdown LSM early in init
Kernel default lockdown mode (Integrity) --->
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
[*] Digital signature verification using multiple keyrings
[*] Enable asymmetric keys support
-*- Require all keys on the integrity keyrings be signed
[*] Provide keyring for platform/firmware trusted keys
[*] Provide a keyring to which Machine Owner Keys may be added
[ ] Enforce Machine Keyring CA Restrictions
Where ""image"" is a placeholder for the architecture specific image name. These options, from the top to the bottom: enforces that the kernel image in a kexec call must be signed (kexec allows replacing the kernel in-place), enforces that kernel modules are signed, enables lockdown integrity mode (prevents modifying the kernel at runtime), and enables various keychains.
On arches that do not natively support decompressing the kernel (e.g. arm64 and riscv), the kernel must be built with its own decompressor (zboot):
Device Drivers --->
Firmware Drivers --->
EFI (Extensible Firmware Interface) Support --->
[*] Enable the generic EFI decompressor
After compilation of the kernel, as explained in the next section, the kernel image must be signed. First install app-crypt/sbsigntools and then sign the kernel image:
root #
emerge --ask app-crypt/sbsigntools
root #
sbsign /usr/src/linux-x.y.z/path/to/kernel-image --cert /path/to/kernel_key.pem --key /path/to/kernel_key.pem --out /usr/src/linux-x.y.z/path/to/kernel-image
For this example the same key that was generated to sign the modules is used to sign the kernel image. It is also possible to generate and use a second sperate key for signing the kernel image. The same OpenSSL command as in the previous section may be used again.
Then proceed with the installation.
To automatically sign EFI executables installed by other packages, enable the secureboot USE flag globally:
USE="modules-sign secureboot"
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
# Optionally, to use custom signing keys.
MODULES_SIGN_KEY="/path/to/kernel_key.pem"
MODULES_SIGN_CERT="/path/to/kernel_key.pem" # Only required if the MODULES_SIGN_KEY does not also contain the certificate.
MODULES_SIGN_HASH="sha512" # Defaults to sha512
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
# Optionally, to boot with secureboot enabled, may be the same or different signing key.
SECUREBOOT_SIGN_KEY="/path/to/kernel_key.pem"
SECUREBOOT_SIGN_CERT="/path/to/kernel_key.pem"
The SECUREBOOT_SIGN_KEY and SECUREBOOT_SIGN_CERT may be different files. For this example the pem file generated by OpenSSL includes both the key and the accompanying certificate, and thus both variables are set to the same value.
When generating an Unified Kernel Image with systemd's
ukify
the kernel image will be signed automatically before inclusion in the unified kernel image and it is not necessary to sign it manually.Architecture specific kernel configurations
Placeholder for architecture-specific kernel build information
Compiling and installing
Placeholder for instructions for building and installing the kernel sources
Alternativa: Usare genkernel
In case it was missed, this section requires the kernel sources to be installed. Be sure to obtain the relevant kernel sources, then return here for the rest of section.
Genkernel should only be considered by users that have a required need that only Genkernel can meet, otherwise it is recommended to use the Distribution kernel or manually compile your own as it will make maintaining a Gentoo system a lot more simple. An example of why genkernel is more difficult to manage is the lack of integration with sys-kernel/installkernel. This means a user will not get the same level of automation as provided by the other methods, such as Unified Kernel Images will need to be created manually when using Genkernel.
Genkernel provides a generic kernel configuration file and will compile the kernel and initramfs, then install the resulting binaries to the appropriate locations. This results in minimal and generic hardware support for the system's first boot, and allows for additional update control and customization of the kernel's configuration in the future.
Be informed: while using genkernel to maintain the kernel provides system administrators with more update control over the system's kernel, initramfs, and other options, it will require a time and effort commitment to perform future kernel updates as new sources are released. Those looking for a hands-off approach to kernel maintenance should use a distribution kernel.
For additional clarity, it is a misconception to believe genkernel automatically generates a custom kernel configuration for the hardware on which it is run; it uses a predetermined kernel configuration that supports most generic hardware and automatically handles the make commands necessary to assemble and install the kernel, the associate modules, and the initramfs file.
Binary redistributable software license group
If the linux-firmware package has been previously installed, then skip onward to the to the installation section.
As a prerequisite, due to the firwmare
USE flag being enabled by default for the sys-kernel/genkernel package, the package manager will also attempt to pull in the sys-kernel/linux-firmware package. The binary redistributable software licenses are required to be accepted before the linux-firmware will install.
This license group can be accepted system-wide for any package by adding the @BINARY-REDISTRIBUTABLE
as an ACCEPT_LICENSE value in the /etc/portage/make.conf file. It can be exclusively accepted for the linux-firmware package by adding a specific inclusion via a /etc/portage/package.license/linux-firmware file.
If necessary, review the methods of accepting software licenses available in the Installing the base system chapter of the handbook, then make some changes for acceptable software licenses.
If in analysis paralysis, the following will do the trick:
root #
mkdir /etc/portage/package.license
sys-kernel/linux-firmware @BINARY-REDISTRIBUTABLE
Installation
Vediamo ora come usare genkernel. Prima di tutto, installare sys-kernel/genkernel:
root #
emerge --ask sys-kernel/genkernel
Generation
Ora, compilare i sorgenti del kernel eseguendo genkernel all. Attenzione, genkernel compila un kernel che supporta quasi tutto l'hardware possibile, questa compilazione richiederà molto tempo prima di arrivare alla fine!
Se la partizione di boot non usa ext2 o ext3 come filesystem potrebbe essere necessario configurare manualmente il kernel usando genkernel --menuconfig all e aggiungere il supporto a questo tipo particolare di filesystem nel kernel (ovvero, non come modulo). Gli utenti di LVM2 dovranno probabilmente aggiungere anche
--lvm
come argomento.Users of LVM2 should add
--lvm
as an argument to the genkernel command below.root #
genkernel all
Quando genkernel conclude, vengono creati un kernel, un insieme completo di moduli e un disco RAM iniziale (initramfs). Useremo il kernel e l'initrd per configurare un boot loader più avanti in questo documento. Annotarsi i nomi del kernel e dell'initrd, in quanto queste informazioni verranno usate quando verrà modificato il file di configurazione del boot loader. L'initrd verrà avviato immediatamente dopo che il processo di avvio avrà effettuato l'autorilevamento dell'hardware (proprio come fa il CD di installazione) prima che il sistema "reale" si avvii.
root #
ls /boot/kernel* /boot/initramfs*
Kernel installation
Installkernel
Installkernel may be used to automate, the kernel installation, initramfs generation, unified kernel image generation and/or bootloader configuration among other things. sys-kernel/installkernel implements two paths of achieving this: the traditional installkernel originating from Debian and systemd's kernel-install. Which one to choose depends, among other things, on the system's bootloader. By default systemd's kernel-install is used on systemd profiles, while the traditional installkernel is the default for other profiles.
If unsure, follow the 'Traditional layout' subsection below.
systemd-boot
When using systemd-boot (formerly gummiboot) as the bootloader, systemd's kernel-install must be used. Therefore ensure the systemd and the systemd-boot USE flags are enabled on sys-kernel/installkernel, and then install the relevant package for systemd-boot.
On OpenRC systems:
sys-apps/systemd-utils boot kernel-install
sys-kernel/installkernel systemd systemd-boot
root #
emerge --ask sys-apps/systemd-utils
On systemd systems:
sys-apps/systemd boot
sys-kernel/installkernel systemd-boot
root #
emerge --ask sys-apps/systemd
GRUB
Users of GRUB can use either systemd's kernel-install or the traditional Debian installkernel. The systemd USE flag switches between these implementations. To automatically run grub-mkconfig when installing the kernel, enable the grub USE flag.
sys-kernel/installkernel grub
root #
emerge --ask sys-kernel/installkernel
Traditional layout, other bootloaders (e.g. lilo, etc.)
The traditional /boot layout (for e.g. LILO, etc.) is used by default if the grub, systemd-boot and uki USE flags are not enabled. No further action is required.
Building an initramfs
In certain cases it is necessary to build an initramfs - an initial ram-based file system. The most common reason is when important file system locations (like /usr/ or /var/) are on separate partitions. With an initramfs, these partitions can be mounted using the tools available inside the initramfs. The default configuration of the Project:Distribution Kernel requires an initramfs.
Without an initramfs, there is a risk that the system will not boot properly as the tools that are responsible for mounting the file systems require information that resides on unmounted file systems. An initramfs will pull in the necessary files into an archive which is used right after the kernel boots, but before the control is handed over to the init tool. Scripts on the initramfs will then make sure that the partitions are properly mounted before the system continues booting.
If using genkernel, it should be used for both building the kernel and the initramfs. When using genkernel only for generating an initramfs, it is crucial to pass
--kernel-config=/path/to/kernel.config
to genkernel or the generated initramfs may not work with a manually built kernel. Note that manually built kernels go beyond the scope of support for the handbook. See the kernel configuration article for more information.Installkernel can automatically generate an initramfs when installing the kernel if the dracut USE flag is enabled:
sys-kernel/installkernel dracut
Alternatively, dracut may be called manually to generate an initramfs. Install sys-kernel/dracut first, then have it generate an initramfs:
root #
emerge --ask sys-kernel/dracut
root #
dracut --kver=6.6.21-gentoo
The initramfs will be stored in /boot/. The resulting file can be found by simply listing the files starting with initramfs:
root #
ls /boot/initramfs*
Optional: Building an Unified Kernel Image
An Unified Kernel Image (UKI) combines, among other things, the kernel, the initramfs and the kernel command line into a single executable. Since the kernel command line is embedded into the unified kernel image it should be specified before generating the unified kernel image (see below). Note that any kernel command line arguments supplied by the bootloader or firmware at boot are ignored when booting with secure boot enabled.
An unified kernel image requires a stub loader, currently the only one available is systemd-stub. To enable it:
For systemd systems:
sys-apps/systemd boot
For OpenRC systems:
sys-apps/systemd-utils boot kernel-install
Installkernel can automatically generate an unified kernel image using either dracut or ukify, by enabling the respective flag. The uki USE flag should be enabled as well to install the generated unified kernel image to the $ESP/EFI/Linux directory on the EFI system partition (ESP).
For dracut:
sys-kernel/installkernel dracut uki
uefi="yes"
kernel_cmdline="some-kernel-command-line-arguments"
For ukify:
sys-apps/systemd ukify # For systemd systems
sys-apps/systemd-utils ukify # For OpenRC systems
sys-kernel/installkernel dracut ukify uki
some-kernel-command-line-arguments
Note that while dracut can generate both an initramfs and an unified kernel image, ukify can only generate the latter and therefore the initramfs must be generated separately with dracut.
Generic Unified Kernel Image
The prebuilt sys-kernel/gentoo-kernel-bin can optionally install a prebuilt generic unified kernel image containing a generic initramfs that is able to boot most systemd based systems. It can be installed by enabling the generic-uki USE flag, and configuring installkernel to not generate a custom initramfs or unified kernel image:
sys-kernel/gentoo-kernel-bin generic-uki
sys-kernel/installkernel -dracut -ukify uki
Secure Boot
The generic Unified Kernel Image optionally distributed by sys-kernel/gentoo-kernel-bin is already pre-signed. How to sign a locally generated unified kernel image depends on whether dracut or ukify is used. Note that the location of the key and certificate should be the same as the SECUREBOOT_SIGN_KEY and SECUREBOOT_SIGN_CERT as specified in /etc/portage/make.conf.
For dracut:
uefi="yes"
kernel_cmdline="some-kernel-command-line-arguments"
uefi_secureboot_key="/path/to/kernel_key.pem"
uefi_secureboot_cert="/path/to/kernel_key.pem"
For ukify:
[UKI]
SecureBootPrivateKey=/path/to/kernel_key.pem
SecureBootCertificate=/path/to/kernel_key.pem
Rebuilding external kernel modules
External kernel modules installed by other packages via linux-mod-r1.eclass
must be rebuilt for each new kernel version. When the distribution kernels are used this may be automated by enabling the dist-kernel flag globally.
*/* dist-kernel
External kernel modules may also be rebuilt manually with:
root #
emerge --ask @module-rebuild
Moduli del kernel
Configurazione dei moduli
Hardware modules are optional to be listed manually. udev will normally load all hardware modules that are detected to be connected in most cases. However, it is not harmful for modules that will be automatically loaded to be listed. Modules cannot be loaded twice; they are either loaded or unloaded. Sometimes exotic hardware requires help to load their drivers.
Elencare i moduli, che serve caricare automaticamente, su /etc/conf.d/modules. Anche le opzioni extra possono essere aggiunte ai moduli se necessario.
Per visualizzare tutti i moduli disponibili, eseguire il seguente comando find. Non dimenticarsi di sostituire "<versione del kernel>" con la versione del kernel appena compilata:
root #
find /lib/modules/<versione del kernel>/ -type f -iname '*.o' -or -iname '*.ko' | less
Force loading particular kernel modules
Per esempio, per caricare automaticamente il modulo 3c59x.ko (che è il driver per una famiglia specifica di schede di rete 3Com), modificare il file /etc/conf.d/modules ed inserirvi il nome del modulo.
root #
nano -w /etc/conf.d/modules
modules="3c59x"
Note that the module's .ko file suffix is insignificant to the loading mechanism and left out of the configuration file:
3c59x
Continuare l'installazione con la Configurazione del sistema.