Handbuch:MIPS/Installation/Festplatten
Einführung in blockorientierte Geräte
Blockorientierte Geräte
Schauen wir uns die Festplatten-spezifischen Aspekte von Gentoo Linux und Linux im Allgemeinen an - insbesondere blockorientierte Geräte (Block Devices), Partitionen und Linux Dateisysteme. Wenn Sie die Vor- und Nachteile von Festplatten verstanden haben, können Sie Partitionen und Dateisysteme für die Installation erstellen.
Zu Beginn schauen wir uns blockorientierte Geräte an. SCSI- und SATA-Laufwerke haben Device-Namen wie: /dev/sda, /dev/sdb, /dev/sdc usw. Modernere Rechner können PCI-Express basierte NVMe Solid-State-Disks haben, die Device-Namen haben wie: /dev/nvme0n1, /dev/nvme0n2 usw.
Die folgende Tabelle soll Lesern dabei helfen herauszufinden, wo bestimmte Arten von blockorientierten Geräten zu finden sind:
Device-Typ | Standard Device-Name | Anmerkungen |
---|---|---|
IDE, SATA, SAS, SCSI, or USB flash | /dev/sda | Diese Device-Typen werden auf Hardware ab 2007 verwendet - und sind vermutlich die am häufigsten genutzten Device-Namen unter Linux. Diese Geräte werden als blockorientierter Speicher angeschlossen über den SATA bus, über SCSI und über USB. Beispielsweise wird die erste Partition des ersten SATA-Devices /dev/sda1 genannt. |
NVM Express (NVMe) | /dev/nvme0n1 | The latest in solid state technology, NVMe drives are connected to the PCI Express bus and have the fastest transfer block speeds on the market. Systems from around 2014 and newer may have support for NVMe hardware. The first partition on the first NVMe device is called /dev/nvme0n1p1. |
MMC, eMMC, and SD | /dev/mmcblk0 | embedded MMC devices, SD cards, and other types of memory cards can be useful for data storage. That said, many systems may not permit booting from these types of devices. It is suggested to not use these devices for active Linux installations; rather consider using them to transfer files, which is their design goal. Alternatively they could be useful for short-term backups. |
Die oben genannten blockorientierten Geräte repräsentieren eine abstrakte Schnittstelle zur Festplatte. Benutzerprogramme können diese Block Devices nutzen, um mit der Festplatte zu interagieren, ohne sich darum sorgen zu müssen, ob die Festplatten über SATA, SCSI oder etwas anderem angebunden sind. Das Programm kann den Speicher auf der Festplatte einfach als eine Anhäufung zusammenhängender 4096-Byte (4k) Blöcke mit wahlfreiem Zugriff ansprechen.
Partitionen
Obwohl es theoretisch möglich wäre eine vollständige Festplatte zu nutzen um ein Linux-System unterzubringen, kommt das in der Praxis fast nie vor. Stattdessen werden komplette Festplatten Block Devices in kleinere, besser handhabbare Block Devices unterteilt. Diese werden Partitionen genannt.
Ein Partitionsschema entwerfen
Wie viele Partitionen und wie groß?
Bei dem Design des Partitionsschemas sollten die Anforderungen an das System und an die Dateisysteme berücksichtigt werden. Wenn es viele Nutzer gibt, ist eine eigene Partition /home/ ratsam, da diese die Sicherheit erhöht und Backups und andere Wartungsarbeiten vereinfacht. Wenn Gentoo installiert wird, um als Mailserver zu dienen, dann sollte es eine eigene Partition /var/ geben, weil alle Mails im Verzeichnis /var/ gespeichert werden. Spiele-Server werden eine eigene Partition /opt/ besitzen, da die meiste Spiele-Server-Software dort installiert wird. Der Grund für diese Empfehlungen ist ähnlich wie für das /home/ Verzeichnis: Sicherheit, Backups und Wartung.
Bei den meisten Gentoo-Installationen sollten /usr/ und /var/ relativ groß sein. In /usr werden die Mehrzahl der Anwendungen und auch der Linux Kernel Quellcode gespeichert (unter /usr/src). Standardmäßig enthält /var/ das Gentoo ebuild Repository (unter /var/db/repos/gentoo), das alleine schon rund 650 MiB Plattenplatz benötigt. Diese Größenabschätzung enthält noch nicht den benötigten Plattenplatz für die Verzeichnisse /var/cache/distfiles und /var/cache/binpkgs, die sich im Laufe der Zeit mit Source-Code Dateien und (optional) mit Binärpaketen füllen werden - je nachdem, wann und wie sie dem System hinzugefügt werden.
Die Anzahl und Größe der Partitionen hängt vom Abwägen der Vor- und Nachteile und der Auswahl der besten Lösung für einen gegebenen Anwendungsfall ab. Separate Partitionen oder Volumes haben folgende Vorteile:
- Sie können das performanteste Dateisystem für jede Partition oder jedes Volume wählen.
- Dem Gesamtsystem kann der freie Speicherplatz nicht ausgehen, wenn ein fehlerhaftes Tool kontinuierlich Dateien auf eine Partition oder ein Volume schreibt.
- Falls nötig, kann die Zeit für Dateisystemüberprüfungen reduziert werden, da mehrere Überprüfungen gleichzeitig durchgeführt werden können. (Dieser Vorteil kommt aber eher bei mehreren Festplatten, als bei mehreren Partitionen auf einer Festplatte zum Tragen.)
- Sie können die Sicherheit erhöhen, indem Sie einige Partitionen oder Volumes "read-only",
nosuid
(setuid Flags werden ignoriert),noexec
(executable Flags werden ignoriert) etc. einbinden.
Viele separate Partitionen können aber auch Nachteile haben:
- Wenn diese schlecht an das System angepasst sind, kann es sein, dass eine Partition voll ist und auf einer anderen Partition noch viel freier Platz verfügbar ist.
- Eine separate Partition für /usr/ kann es erforderlich machen, dass beim Booten ein initramfs verwendet wird, welches diese Partitionen vor der Ausführung anderer Boot-Skripte mountet. Das Erzeugen und Betreiben eines initramsfs ist nicht Teil dieses Handbuchs. Wir empfehlen Anfängern, für /usr/ keine eigene Partition zu verwenden.
- Es gibt ein Limit von maximal 15 Partitionen für SCSI und SATA - es sei denn, der Datenträger nutzt GPT-Labels.
Installationen, die systemd als Dienst-und Init-System verwenden wollen, müssen /usr/ beim Booten verfügbar haben, entweder als Teil des Root-Dateisystems oder eingehängt über ein initramfs.
Was ist mit dem Swap-Speicher?
RAM size | Suspend support? | Hibernation support? |
---|---|---|
2 GB or less | 2 * RAM | 3 * RAM |
2 to 8 GB | RAM amount | 2 * RAM |
8 to 64 GB | 8 GB minimum, 16 maximum | 1.5 * RAM |
64 GB or greater | 8 GB minimum | Hibernation not recommended! Hibernation is not recommended for systems with very large amounts of memory. While possible, the entire contents of memory must be written to disk in order to successfully hibernate. Writing tens of gigabytes (or worse!) out to disk can can take a considerable amount of time, especially when rotational disks are used. It is best to suspend in this scenario. |
Es gibt keine perfekte Größe für den Swap-Speicher. Der Zweck von Swap-Speicher ist, Festplattenspeicherplatz für den Kernel bereitzuhalten, wenn der interne Speicher (RAM) knapp wird. Der Swap-Speicher erlaubt dem Kernel, Speicherseiten, auf die vermutlich nicht bald zugegriffen wird, auf die Platte auszulagern (Swap oder Page-Out). Dadurch kann Arbeitsspeicher im RAM für den aktuell laufenden Prozess freigemacht werden. Werden die auf die Festplatte ausgelagerten Speicherseiten (Pages) jedoch plötzlich benötigt, müssen diese Seiten wieder zurück in den Arbeitsspeicher geladen werden (Page-In). Dies dauert jedoch erheblich länger, als wenn die Daten direkt aus dem RAM gelesen werden könnten (da Festplatten verglichen mit Arbeitsspeicher sehr langsam sind).
Wenn auf einem System keine speicherintensiven Anwendungen ausgeführt werden oder das System viel RAM zur Verfügung hat, benötigt es vermutlich nicht viel Swap-Speicher. Wenn jedoch der Ruhezustand "Hibernation" verwendet werden soll, wird der Swap-Speicher verwendet, um den gesamten Inhalt des Hauptspeichers (RAM) zu sichern (dieser Ruhezustand wird bei Desktop- und Laptop-Systemen häufiger verwendet, als bei Servern). Wenn das System den Ruhezustand "Hibernation" unterstützen soll, muss der Swap-Speicher so groß wie oder größer als der Hauptspeicher (RAM) sein.
Als generelle Regel gilt: der Swap-Speicher sollte zwei Mal so groß sein wie der Arbeitsspeicher (RAM). Auf Systemen mit mehreren (rotierenden) Festplatten ist es sinnvoll, eine Swap-Partition auf jeder Festplatte einzurichten, damit Schreib-/Lese-Operationen parallel ausgeführt werden können. Je schneller auf einen Festplatte zugegriffen werden kann, desto schneller wird das System arbeiten, wenn auf Swap-Speicher zugegriffen werden muss. Wenn zwischen rotierenden Festplatten und SSDs gewählt werden kann, ist es aus Performance-Sicht besser, den Swap-Speicher auf die SSD zu legen. Alternativ zu Swap-Partitionen können auch Swap-Dateien verwendet werden; dies ist hauptsächlich interessant bei Systemen mit sehr geringem Festplatten-Platz.
fdisk verwenden
SGI Maschinen: SGI Plattenlabel erstellen
Alle Festplatten in einem SGI System benötigen ein SGI Plattenlabel, welches eine ähnliche Funktionalität wie ein Sun oder MS-DOS Plattenlabel bietet -- es speichert Informationen über die Partitionen einer Festplatte. Die Erzeugung eines neuen SGI Plattenlabels erzeugt zwei spezielle Partitionen auf der Festplatte:
- SGI Volume Header (9. Partition): Diese Partition ist wichtig. Sie ist der Ort an dem sich der Bootloader befindet und in einigen Fällen enthält sie ebenfalls die Kernel-Abbilder.
- SGI Volume (11. Partition): Diese Partition ist ähnlich wichtig wie die dritte Partition des Sun Plattenlabels "Whole Disk". Diese Partition umschließt die gesamte Festplatte und solle unberührt bleiben. Sie dient keinem anderen speziellen Zweck außer das PROM in undokumentierter Weise zu unterstützen (oder es wird irgendwie von IRIX verwendet).
Der SGI Volume Header muss bei Zylinder 0 beginnen. Ein Fehler hierbei bedeutet ein Scheitern beim Booten von der Platte.
Das Folgende ist ein Beispiel-Auszug einer fdisk Sitzung. Lesen und passen Sie es Ihren persönlichen Bedürfnissen an ...
root #
fdisk /dev/sda
Wechseln Sie in den Expertenmodus:
Command (m for help):
x
Mit m wird das vollständige Menü der Optionen angezeigt:
Expert command (m for help):
m
Command action b move beginning of data in a partition c change number of cylinders d print the raw data in the partition table e list extended partitions f fix partition order g create an IRIX (SGI) partition table h change number of heads m print this menu p print the partition table q quit without saving changes r return to main menu s change number of sectors/track v verify the partition table w write table to disk and exit
Erzeugen Sie ein SGI Plattenlabel:
Expert command (m for help):
g
Building a new SGI disklabel. Changes will remain in memory only, until you decide to write them. After that, of course, the previous content will be irrecoverably lost.
Kehren Sie zum Hauptmenü zurück:
Expert command (m for help):
r
Werfen wir einen Blick auf das aktuelle Partitions-Layout:
Command (m for help):
p
Disk /dev/sda (SGI disk label): 64 heads, 32 sectors, 17482 cylinders Units = cylinders of 2048 * 512 bytes ----- partitions ----- Pt# Device Info Start End Sectors Id System 9: /dev/sda1 0 4 10240 0 SGI volhdr 11: /dev/sda2 0 17481 35803136 6 SGI volume ----- Bootinfo ----- Bootfile: /unix ----- Directory Entries -----
Wenn die Festplatte bereits ein bestehendes SGI Plattenlabel hat, wird fdisk die Erzeugung eines neuen Labels nicht gestatten. Es gibt zwei Möglichkeiten das zu umgehen. Die erste ist die Erstellung eines Sun oder MS-DOS Plattenlabels, die Änderungen auf die Festplatte zu schreiben und fdisk neu zu starten. Die zweite ist die Partitionstabelle mit Nullwerten durch den folgenden Befehl zu überschreiben:
dd if=/dev/zero of=/dev/sda bs=512 count=1
SGI Volume-Header Größenänderung
Diesen Schritt benötigt man aufgrund eines Bugs in fdisk oft. Aus irgendeinem Grund wird der Volume-Header nicht korrekt erstellt. Das Ergebnis ist, dass er auf Zylinder 0 startet und endet. Dies verhindert, dass mehreren Partitionen erstellt werden. Um dieses Problem zu umgehen ... lesen Sie weiter.
Da jetzt ein SGI Plattenlabel erstellt wurde, können nun Partitionen definiert werden. Im obigen Beispiel sind bereits zwei Partitionen definiert. Das sind wie erwähnt die besonderen Partitionen und sie sollten normalerweise nicht verändert werden. Wie auch immer, zur Installation von Gentoo müssen wir einen Bootloader und möglicherweise mehrere Kernel-Abbilder (abhängig vom Systemtyp) direkt in den Volume-Header laden. Der Volume-Header selbst kann bis zu acht Abbilder jeglicher Größe beinhalten mit jeweils einem acht Zeichen langen Namen.
Der Vorgang den Volume-Header größer zu machen ist etwas verworren und mit einem kleinen Trick verbunden. Man kann den Volume-Header wegen dem eigenartigen Verhalten von fdisk nicht einfach löschen und ihn dann wieder neu hinzufügen. Im Beispiel unten erzeugen wir einen 50 MB großen Volume-Header in Verbindung mit einer 50 MB großen /boot/ Partition. Das tatsächliche Plattenlayout kann sich unterscheiden, dies dient nur der Veranschaulichung.
Eine neue Partition erstellen:
Command (m for help):
n
Partition number (1-16): 1 First cylinder (5-8682, default 5): 51 Last cylinder (51-8682, default 8682): 101
Beachten Sie, dass fdisk zur Neuerstellung von Partition Nr. 1 als kleinsten Zylinder 5 gestattet. Wenn wir versucht hätten den SGI Volume-Header zu löschen und auf diese Weise wiederherzustellen, würden wir vor dem gleichen Problem stehen. In unserem Beispiel wollen wir dass /boot/ 50 MB groß ist, deshalb starten wir bei Zylinder 51. (- Der Volume-Header muss bei Zylinder 0 beginnen, erinnern Sie sich?) Den End-Zylinder setzten wir bei 101, das in etwa 50 MB entspricht (+/- 1..5 MB).
Die Partition löschen:
Command (m for help):
d
Partition number (1-16): 9
Jetzt die Neuerstellung der Volume-Header Partition:
Command (m for help):
n
Partition number (1-16): 9 First cylinder (0-50, default 0): 0 Last cylinder (0-50, default 50): 50
Wenn Sie sich unsicher über die Verwendung fdisk sind, werfen sie weiter unten einen Blick auf die Anleitung zur Partitionierung auf Cobalt Systemen. Das Konzept ist genau das gleiche -- denken Sie nur daran die Volume-Header und die "Whole Disk" Partition in Ruhe zu lassen.
Sobald dies geschehen ist können Sie die übrigen Partitionen die Sie benötigen erzeugen. Nachdem Sie alle Partitionen angelegt haben, stellen Sie sicher die Partitions-ID der Swap Partition auf 82 zu stellen, "Linux Swap". Der Standard ist 83, "Linux Native".
Cobalt Festplatten partitionieren
Auf Cobalt Maschinen erwartet das BOOTROM einen MS-DOS MBR, deshalb ist die Festplattenpartitionierung relativ geradlinig. -- In der Tat wird dies wie bei einer Intel x86 Maschine gemacht. Es gibt jedoch ein paar Dinge die Sie beachten sollten.
- Die Cobalt Firmware erwartet /dev/sda1 als Linux Partition im Format EXT2 Revision 0. EXT Revision 1 Partitionen funktionieren NICHT! (Das Cobalt BOOTROM versteht nur EXT2r0.)
- Die oben angesprochene Partition muss das gzip-komprimierte ELF Abbild vmlinux.gz in der Wurzel ("root") dieser Partition enthalten, das als Kernel geladen wird.
Aus diesem Grund wird eine ca. 20 MB große mit EXT2r0 formatierte /boot/ Partition empfohlen auf der CoLo und die Kernel installiert werden. Dies gestattet dem Benutzer ein modernes Dateisystem (EXT3 oder ReiserFS) auf der Root Partition zu betreiben.
Im Beispiel wird davon ausgegangen, dass /dev/sda1 erzeugt wird, um später als /boot/ Partition eingehängt zu werden. Falls Sie die Partition zu / machen wollen, denken Sie an die Erwartungen des PROMs.
Also weiter ... Um die Partition zu erstellen geben Sie an der Eingabeaufforderung fdisk /dev/sda ein. Die wichtigsten Befehle, die Sie wissen sollten sind diese:
'"`UNIQ--pre-00000007-QINU`"'
root #
fdisk /dev/sda
The number of cylinders for this disk is set to 19870. There is nothing wrong with that, but this is larger than 1024, and could in certain setups cause problems with: 1) software that runs at boot time (e.g., old versions of LILO) 2) booting and partitioning software from other OSs (e.g., DOS FDISK, OS/2 FDISK)
Fangen Sie damit an, alle vorhandenen Partitionen zu löschen:
Command (m for help):
o
Building a new DOS disklabel. Changes will remain in memory only, until you decide to write them. After that, of course, the previous content won't be recoverable. The number of cylinders for this disk is set to 19870. There is nothing wrong with that, but this is larger than 1024, and could in certain setups cause problems with: 1) software that runs at boot time (e.g., old versions of LILO) 2) booting and partitioning software from other OSs (e.g., DOS FDISK, OS/2 FDISK) Warning: invalid flag 0x0000 of partition table 4 will be corrected by w(rite)
Überprüfen Sie nun durch Drücken der Befehlstaste p, dass die Partitionstabelle leer ist:
Command (m for help):
p
Disk /dev/sda: 10.2 GB, 10254827520 bytes 16 heads, 63 sectors/track, 19870 cylinders Units = cylinders of 1008 * 512 = 516096 bytes Device Boot Start End Blocks Id System
Erstellen Sie die /boot Partition:
Command (m for help):
n
Command action e extended p primary partition (1-4) p Partition number (1-4): 1 First cylinder (1-19870, default 1): Last cylinder or +size or +sizeM or +sizeK (1-19870, default 19870): +20M
Wenn Sie die Partitionen ausgeben lassen, beachten Sie die neu erstellte:
Command (m for help):
p
Disk /dev/sda: 10.2 GB, 10254827520 bytes 16 heads, 63 sectors/track, 19870 cylinders Units = cylinders of 1008 * 512 = 516096 bytes Device Boot Start End Blocks Id System /dev/sda1 1 40 20128+ 83 Linux
Lassen Sie uns nun eine erweiterte Partition erstellen, die den Rest der Festplatte umfasst. In dieser erweiterten Partition legen wir die übrigen Partitionen (logische Partitionen) an:
Command (m for help):
n
Command action e extended p primary partition (1-4) e Partition number (1-4): 2 First cylinder (41-19870, default 41): Using default value 41 Last cylinder or +size or +sizeM or +sizeK (41-19870, default 19870): Using default value 19870
Jetzt erstellen wir die Partitionen /, /usr, /var usw.
Command (m for help):
n
Command action l logical (5 or over) p primary partition (1-4) l First cylinder (41-19870, default 41):<Press ENTER> Using default value 41 Last cylinder or +size or +sizeM or +sizeK (41-19870, default 19870): +500M
Wiederholen Sie dies wie benötigt.
Zum Schluss zur Swap Partition. Es wird empfohlen mindestens 250 MB, besser 1 GB Speicherplatz zu verwenden:
Command (m for help):
n
Command action l logical (5 or over) p primary partition (1-4) l First cylinder (17294-19870, default 17294): <Press ENTER> Using default value 17294 Last cylinder or +size or +sizeM or +sizeK (1011-19870, default 19870): <Press ENTER> Using default value 19870
Wenn Sie die Partitionstabelle überprüfen, sollte alles bereit sein - bis auf eine Sache.
Command (m for help):
p
Disk /dev/sda: 10.2 GB, 10254827520 bytes 16 heads, 63 sectors/track, 19870 cylinders Units = cylinders of 1008 * 512 = 516096 bytes Device Boot Start End Blocks ID System /dev/sda1 1 21 10552+ 83 Linux /dev/sda2 22 19870 10003896 5 Extended /dev/sda5 22 1037 512032+ 83 Linux /dev/sda6 1038 5101 2048224+ 83 Linux /dev/sda7 5102 9165 2048224+ 83 Linux /dev/sda8 9166 13229 2048224+ 83 Linux /dev/sda9 13230 17293 2048224+ 83 Linux /dev/sda10 17294 19870 1298776+ 83 Linux
Ist Ihnen aufgefallen, dass Partition 10 - die Swap Partition - immer noch vom Typ 83 ist? Lassen Sie uns das auf den richtigen Typ ändern:
Command (m for help):
t
Partition number (1-10): 10 Hex code (type L to list codes): 82 Changed system type of partition 10 to 82 (Linux swap)
Nun zur Überprüfung:
Command (m for help):
p
Disk /dev/sda: 10.2 GB, 10254827520 bytes 16 heads, 63 sectors/track, 19870 cylinders Units = cylinders of 1008 * 512 = 516096 bytes Device Boot Start End Blocks ID System /dev/sda1 1 21 10552+ 83 Linux /dev/sda2 22 19870 10003896 5 Extended /dev/sda5 22 1037 512032+ 83 Linux /dev/sda6 1038 5101 2048224+ 83 Linux /dev/sda7 5102 9165 2048224+ 83 Linux /dev/sda8 9166 13229 2048224+ 83 Linux /dev/sda9 13230 17293 2048224+ 83 Linux /dev/sda10 17294 19870 1298776+ 82 Linux Swap
Wir speichern die neue Partitionstabelle:
Command (m for help):
w
The partition table has been altered! Calling ioctl() to re-read partition table. Syncing disks.
Erstellen von Dateisystemen
Wenn Sie ein SSD- oder NVMe-Laufwerk verwenden, prüfen Sie bitte, ob es ein Firmware-Upgrade benötigt. Insbesondere einige Intel-SSDs (600p und 6000p) benötigen ein Firmware-Upgrade für kritische Fehlerbehebungen, um Datenbeschädigungen zu vermeiden, die durch XFS-I/O-Nutzungsmuster verursacht werden (allerdings nicht durch einen Fehler des Dateisystems). smartctl kann helfen, das Modell und die Firmware-Version zu überprüfen.
Einleitung
Nachdem die Partitionen angelegt wurden, ist es an der Zeit, Dateisysteme darauf anzulegen. Im nächsten Abschnitt werden die unterschiedlichen Dateisysteme beschrieben, die Linux unterstützt. Leser, die bereits wissen, welches Dateisystem sie verwenden wollen, können bei Dateisystem auf einer Partition anlegen fortfahren. Alle anderen sollten weiterlesen, um mehr über die verfügbaren Dateisysteme zu erfahren ...
Dateisysteme
Linux unterstützt mehrere Dutzend Dateisysteme, wobei allerdings viele davon für ganz spezielle Anwendungszwecke optimiert sind. Nur einige Dateisysteme gelten als stabil auf der mips Architektur. Es ist ratsam, sich über Dateisysteme und deren Unterstützungsgrad zu informieren, damit Sie nicht für wichtige Partitionen ein eher experimentelles Dateisystem wählen. XFS ist das empfohlene all-round Dateisystem für alle Plattformen. Nachfolgend eine nicht-vollständige Auswahl von verfügbaren Dateisystemen.
- btrfs
- Dateisystem der neueren Generation.
Bietet erweiterte Funktionen wie Snapshotting, Selbstheilung durch Prüfsummen, transparente Kompression, Subvolumes und integriertes RAID. Kernel vor 5.4.y sind nicht garantiert sicher für die Verwendung mit btrfs in der Produktion, da Korrekturen für ernsthafte Probleme nur in den neueren Versionen der LTS-Kernelzweige vorhanden sind. RAID 5/6 und Quota-Gruppen sind bei allen Versionen von btrfs unsicher.
- ext4
- Ext4 ist ein zuverlässiges, universell einsetztbares Dateisystem für alle Plattformen, auch wenn ihm moderne Funktionen wie Reflinks fehlen.
- f2fs
- Das Flash-Friendly File System wurde ursprünglich von Samsung für die Verwendung mit NAND-Flash-Speicher entwickelt. Es ist eine gute Wahl für die Installation von Gentoo auf microSD-Karten, USB-Laufwerken oder anderen Flash-basierten Speichergeräten.
- XFS
- Dateisystem mit Metadaten-Journaling, das über einen robusten Funktionsumfang verfügt und für Skalierbarkeit optimiert ist. Es wurde kontinuierlich weiterentwickelt, um moderne Funktionen einzubeziehen. Der einzige Nachteil ist, dass XFS-Partitionen noch nicht verkleinert werden können, obwohl daran gearbeitet wird. XFS unterstützt vor allem Reflinks und Copy on Write (CoW), was besonders auf Gentoo-Systemenen hilfreich ist, da die Benutzer viele Kompilierungen durchführen müssen. XFS ist das empfohlene modernen Allzweck-Dateisystem für alle Plattformen. Erfordert, dass eine Partition mindestens 300 MB groß ist.
- VFAT
- Auch bekannt als FAT32, wird von Linux unterstützt, unterstützt aber nicht die Standard-UNIX-Berechtigungseinstellungen. Es wird hauptsächlich für die Interoperabilität/den Austausch mit anderen Betriebssystemen (Microsoft Windows oder Apples MacOS) verwendet, ist aber auch eine Notwendigkeit für einige System-Bootloader-Firmware (wie UEFI). Benutzer von UEFI-Systemen benötigen eine EFI System Partition, die mit VFAT formatiert ist, um booten zu können.
- NTFS
- Dieses 'New Technology"-Dateisystem ist das Vorzeige-Dateisystem von Microsoft Windows seit Windows NT 3.1. Ähnlich wie VFAT speichert es keine UNIX-Berechtigungseinstellungen oder erweiterte Attribute, die für BSD oder Linux notwendig sind, um ordnungsgemäß zu funktionieren, daher sollte es in den meisten Fällen nicht als Root-Dateisystem verwendet werden. Es sollte nur für die Interoperabilität oder den Datenaustausch mit Microsoft Windows-Systemen verwendet werden (beachten Sie die Betonung auf nur).
Ausführlichere Informationen über Dateisysteme finden Sie in dem von der Community gepflegten Dateisystem-Artikel.
Dateisystem auf einer Partition anlegen
Bitte stellen Sie sicher, dass Sie das entsprechende Paket für das gewählte Dateisystem später im Handbuch emergen, bevor Sie am Ende des Installationsprozesses neu booten.
Dateisysteme können mit Hilfe von Programmen auf einer Partition oder auf einem Datenträger angelegt werden. Die folgende Tabelle zeigt, welchen Befehl Sie für welches Dateisystem benötigen. Um weitere Informationen zu einem Dateisystem zu erhalten, können Sie auf den Namen des Dateisystems klicken.
Dateisystem | Befehl zum Anlegen | Teil der Minimal CD? | Gentoo Paket |
---|---|---|---|
btrfs | mkfs.btrfs | Yes | sys-fs/btrfs-progs |
ext4 | mkfs.ext4 | Yes | sys-fs/e2fsprogs |
f2fs | mkfs.f2fs | Yes | sys-fs/f2fs-tools |
xfs | mkfs.xfs | Yes | sys-fs/xfsprogs |
vfat | mkfs.vfat | Yes | sys-fs/dosfstools |
NTFS | mkfs.ntfs | Yes | sys-fs/ntfs3g |
The handbook recommends new partitions as part of the installation process, but it is important to note running any mkfs command will erase any data contained within the partition. When necessary, ensure any data that exists within is appropriately backed up before creating a few filesystem.
Um beispielsweise die EFI System-Partition (/dev/sda1) als FAT32 und die root-Partition (/dev/sda5) als xfs zu formatieren (wie in dem Beispiel-Partitionsschema), würde man folgende Befehle verwenden:
root #
mkfs.xfs /dev/sda5
EFI system partition filesystem
The EFI system partition (/dev/sda1) must be formatted as FAT32:
root #
mkfs.vfat -F 32 /dev/sda1
Legacy BIOS boot partition filesystem
Systems booting via legacy BIOS with a MBR/DOS disklabel can use any filesystem format supported by the bootloader.
For example, to format with XFS:
root #
mkfs.xfs /dev/sda1
Small ext4 partitions
Bei der Verwendung von ext4 auf kleinen Partitionen (kleiner als 8 GiB), sollte das Dateisystem mit den passenden Optionen erstellt werden, um genügend Inodes zu reservieren. Dies kann mit einer der folgenden Anweisungen erfolgen:
root #
mkfs.ext4 -T small /dev/<device>
Dies vervierfacht die Zahl der Inodes für ein angegebenes Dateisystem in der Regel, da es dessen "bytes-per-inode" (Bytes pro Inode) von 16 kB auf 4 kB pro Inode reduziert.
Aktivieren der Swap-Partition
mkswap ist der Befehl der verwendet wird um Swap-Partitionen zu initialisieren:
root #
mkswap /dev/sda10
Zur Aktivierung der Swap-Partition verwenden Sie swapon:
root #
swapon /dev/sda10
This 'activation' step is only necessary because the swap partition is newly created within the live environment. Once the system has been rebooted, as long as the swap partition is properly defined within fstab or other mount mechanism, swap space will activate automatically.
Einhängen der Root-Partition
Installations which were previously started, but did not finish the installation process can resume the installation from this point in the handbook. Use this link as the permalink: Resumed installations start here.
Anwender, die ein Nicht-Gentoo Installationsmedium verwenden, müssen mit folgendem Befehl einen Mount-Point erzeugen:
root #
mkdir --parents /mnt/gentoo
root #
mkdir --parents /mnt/gentoo
For EFI installs only, the ESP should be mounted under the root partition location:
root #
mkdir --parents /mnt/gentoo
Continue creating additional mount points necessary for any additional (custom) partition(s) created during previous steps by using the mkdir command.
Nachdem die Partitionen initialisiert wurden und ein Dateisystem beinhalten, ist es an der Zeit, diese einzuhängen. Verwenden Sie den Befehl mount, aber vergessen Sie nicht die notwendigen Einhänge-Verzeichnisse für jede Partition zu erzeugen. Als Beispiel hängen wir die Root-Partition ein:
Mount the root partition:
root #
mount /dev/sda5 /mnt/gentoo
Continue mounting additional (custom) partitions as necessary using the mount command.
Wenn sich /tmp/ auf einer separaten Partition befinden muss, ändern Sie die Berechtigungen nach dem Einhängen:
root #
chmod 1777 /mnt/gentoo/tmp
In der Anleitung wird später das Dateisystem proc (eine virtuelle Schnittstelle zum Kernel) zusammen mit anderen Kernel Pseudo-Dateisystemen eingehängt. Zunächst installieren wir jedoch die Gentoo Installationsdateien.